

COAXIAL 2DOF PEN PLOTTER

A Report

Presented to

Professor Ridgely and Charlie Refvem

California Polytechnic State University, San Luis Obispo

In Partial Fulfillment

of the Requirements for the Course

ME 405 Mechatronics

by

Dima Kyle || Samuel Lee

June 12th, 2018

Table of Contents
Introduction 4

Specifications 5

Design Development 6
Hardware Design Development 6
Hardware Design 8

Manufacturing 9
Assembly 12
Electrical Wiring 13

Software Design 17
Motor Driver 17
Encoder 20
Servo 22
Motor Task 24
Controller 26
List of Operations 29
Limitations 30
Location 30

Results and Future Steps 30

References 33

Appendix A: Design Drawings and Assembly 34

Appendix B: State Machines and Task Diagrams 35

Appendix C: Code 38

Appendix D: Calculations and Planning 40

Table of Tables
1 Specifications 5
2 Bill of materials 9
3 Encoder and Servo pin connections 14
4 Motor wire labels 14
5 Logic pins on L6206 and CPU pins on Nucleo IHM04A1 board 16

Kyle & Lee ​||​ 2

Table of Figures
1 Dual arm plotter design 6
2 AxiDraw V3 7
3 Comparison between CAD and final product 8
4 Universal Laser System laser 10
5 Arm 1 laser test pieces 10
6 Arm 2 shaft rod 11
7 Shaft coupler manufacturing tools 11
8 Pen holder and servo 12
9 Microcontroller wiring 13
10 Custom Shoe of Brian micropython board 14
11 Shoe of Brian and Nucleo L476RG wiring labels 15
12 Blue Nucleo IHM04A1 wiring 16
13 MotorDriver REPL example 17
14 MotorDriver REPL test code 17
15 Initialization of MotorDriver class 18
16 User selection of motor 19
17 Testing correct user input 19
18 Testing for correct user input type 19
19 Custom InputError 20
20 Encoder REPL example 20
21 Encoder REPL test code 20
22 Initialization of Encoder class 21
23 Main test code for encoder 22
24 Reading encoders 22
25 Zeroing encoders 22
26 Servo REPL example 23
27 Servo REPL test code 23
28 Initialization of Servo class 23
29 Creation and angle input for a servo 24
30 Setting servo position 24
31 Converting angles to a duty cycle 24
32 Testing motor performance 25
33 Optimal ​K​P​ step response 26
34 Example of undesired responses and ​K​P​ values 27
35 Motor response dependency on task frequency/period 28
36 Test code for motor response 29
37 Abstract art 31

Kyle & Lee ​||​ 3

Introduction
The objective of this project was to design, build, program, and document a 2 (and a half axes) pen
plotter, where the half axis comes from some mechanism that could simply engage or disengage a
mechanism. The plotter must fulfill some given a set of design specifications and also some of our own,
explained in ​Specifications​. In the end, though we could not make a fully functional pen plotter, we were
able to make pen plotter that could go through an hpgl file, parse it, raise and drop a pen, and draw
(though not what we intended it to draw).

Our coaxial 2 degree of freedom pen plotter design is inspired by a senior project we came across online
by a 4th year student named Gregory Bourke at Nelson Mandela Metropolitan University, Port Elizabeth,
South Africa [1]. After initially researching and comparing various designs of current pen plotters that
either existed on the market or have been done has home projects by others online, we decided it would
be plausible to construct a robotic arm of some sort for our pen plotter. Although most of the designs
researched consisted of a railing system which may have been more simple to design, we wanted to try a
different approach of using coaxial fixed motors.

Our coaxial 2DOF pen plotter consists of two arms linked together from two concentric motors mounted
over each other on a back plate using a gear and pulley system. A servo mounted at the end of the second
arm control position of the pen hitting up or down when plotting a drawing. Our design can accept
drawings saved as HPGL formatted files and plot on a standard 8.5” x 11”sheet of paper. We also wanted
to make a system that could easily be modified for bigger plots. With longer link arms, our device could
possibly have a larger print area, something that railing systems are limited by. The maximum footprint of
our pen plotter is 18 × 8 × 11 in, so our design is targeted to be as small and portable as possible.
Additionally our design allows the user to plot upside down if any such situation would arise, as the
plotter can be positioned to lay flat on it’s motor plate side. This would suit independent digital artists or
the general public that might wish to have tool which creates quick prototype sketches or drawings as part
of a larger creative projects, from paintings, comic scripts, or animations. Additional applications of this
product could be used as a signature machine for political or educational purposes, calligraphers,
woodworkers, or any sort retailer wanting to generate notes to their customers.

Overall, we learned, practiced, and applied mechatronics skills of mechanical design and analysis,
programming design and debugging, and the fusion of the two aforementioned. This report serves as the
overall documentation so that anyone could learn and recreate our project.

Kyle & Lee ​||​ 4

Specifications
Before design and programming, an important step in any project is to delineate the specifications or
requirements. These are the indication or the benchmarks that determine whether a final product
addressed all the needs. For our project, the main specifications we decided are in Table 1.

Table 1​. Table of specifications, final design, and completion.
Required Specifications Final Design Specifications Used Specifications Met?: Y/N

Chains, lead screws, toothed belts
used

T5 timing belt and pulley Y

Maximum footprint: 18” × 24” 18” × 8” Y

Easy to assemble, fix, and adjust N/A Y

Positioner moves an implement Pen Y

“Half axis” of motion for
implement

Servo Y

Device plots of full area of
standard 8.5” × 11” paper

2 DOF range of motion within
8.5” × 11”

Y

Device accepts specification from
a PC file to produce drawing

HPGL format file used Y

Complete and legible drawing* ______ drawing plotted N

Draw time** - ?

Drawing resolution** - ?

Modularity** - ?

* We unfortunately did not meet this specification fully.
** These are possible tests that could be done to characterize the full capability of the pen plotter.

Kyle & Lee ​||​ 5

Design Development
In order to avoid issues with implementation, much of our time was spent creating a sturdy design both
mechanically and in terms of our programming. We brainstormed, created 3D CAD models, and diagrams
before fully delving into the manufacturing and coding. We derived the kinematics by hand, which can be
seen in Appendix D.

Hardware Design Development

The following designs in Figures 1 and 2 were initially researched and considered before we decided to
go with the coaxial 2DOF pen plotter design. A combination of various railing systems, as well as 2
degree-of-freedom arm designs were considered to be used for our project. All of the design were
researched and referenced online.

Figure 1. A dual arm pen plotter design. This system was considered,
which consisted of two seperate two-bar linkage arms connected to a
pen holder. The particular project pictured above was made with four
plastic rulers, two NEMA17 stepper motors, and an SG90 servo
pen-lift and was designed to be used with g-code output from
Inkscape. Each 2DOF arm was connected to a seperate stepper motor.
Additional details of the Dual Arm pen plotter design can be found on
the Instructables website from the References section [2].

Kyle & Lee ​||​ 6

Figure 2​. The AxiDraw V3 pen plotter from the Evil Mad Scientist.
This was another design we looked at consisting of a dual railing
system with a servo to control the pen. In particular we researched a
current product from the Evil Mad Scientist which incorporates this
design with their AxiDraw V3 pen plotter. The portable, compact
design inspired us to make our pen plotter with the smallest footprint
possible. Additionally, the pen holder design mounted at one end of
the center railing using a servo as pictured above was a feature we
tried to implement in our design. Additional specifications on the
product can be found from their datasheet in the References section
[4].

We wanted to use a design that combined both of these ideas. Thus, we decided on making a coaxial fixed
motor pen plotter because of its low “volume” needed for plotting, modularity, and also the challenge of
the kinematics of deriving the motion of the arms.

Kyle & Lee ​||​ 7

Hardware Design

In order to make the mechanical design, we wanted to require as little machining as possible and also
avoid andy issues with alignment. Thus, we tried using mostly stock parts and also a laser cutter. The use
of stock parts makes this project easily reproducible for others. Figure 3 below shows our final CAD
model of our design compared to our final actual product.

(a) CAD model rendering (b) Final product

Figure 3​. Comparison between CAD model and physical final product.

The detailed drawings for all the manufactured parts, laser templates, stock parts, and assembly are
attached in Appendix A. All files are available upon request.

In the end, our final design had the following components, shown by our bill of materials, Table 2.

The difference between the total and the purchase price is how much we actually spent on all the
components for this project. Many of the components were found, bought discounted, or recycled from
scrap bins. Most of all, a special thanks to the Cal Poly Robotics club for providing the motors at a third
of the market price along with the Aluminum mounting hubs. This list does not include some
miscellaneous nuts and washers we had to use as well as the fasteners that came included with some of
the parts. Furthermore, the acrylic sheet was not full used. Many of these components bought could be
used for other purposes because more than the needed number come in a single purchase.

Kyle & Lee ​||​ 8

Table 2​. Bill of materials
Part Name Price Qty. Total Distributor No.

1 Motor and Encoder $39.95 2 $79.90 Pololu: 2824

2 Aluminum Mounting Hubs $7.95 4 $31.80 Pololu: 1083

3 Aluminum Machined Brackets $7.95 2 $15.90 Pololu: 1995

4 Clear Cast Acrylic Sheet $28.65 1 $28.65 McMaster-Carr: 8560K593

5 T5 Timing Belt $6.07 1 $6.07 McMaster-Carr: 1679K544

6 T5 Timing Pulleys $9.80 2 $19.60 McMaster-Carr: 1428N24

7 18-8 SS Screws M3 X 0.5, 8 mm long $4.12 1 $4.12 McMaster-Carr: 91292A112

8 18-8 SS Screws M3 X 0.5, 14 mm long $5.77 1 $5.77 McMaster-Carr: 91292A027

9 MDF Wood Sheet $10.95 1 $10.95 Home Depot Model # 1508108

10 Reinforcing Brackets $2.92 2 $5.84 McMaster-Carr: 1088A32

11 Sheet Metal Screws $3.04 1 $3.04 McMaster-Carr: 90048A192

12 A2 Tool Steel Rod $5.47 1 $5.47 McMaster-Carr: 8116K35

13 Set Screw Shaft Coupling $2.93 2 $5.86 McMaster-Carr: 5395T111

14 HS-65MG Servo $29.49 1 $29.49 ServoCity: 32065S

15 Stud-Mount Ball Roller $4.00 1 $4.00 McMaster-Carr: 6460K31

16 4-40 SS Screw, 3/4" long $3.07 1 $3.07 McMaster-Carr: 90604A555

 Total $259.53

 Purchase $103.58

Manufacturing

There were only 8 parts that had to be manufactured for this project. The base plate, motor plate, arm 1,
arm 2, a couple rods (simply cut to length), a threaded shaft coupler/holder, sheet metal servo mount, and
a pen holder. All the manufacturing was done in the Cal Poly Mechanical Engineering Mustang 60
Machine Shop.

The base plate and motor plate were both made with the MDF wood. A laser cutter/engraver shown in
Figure 4 was used to etch the layout to position the through holes needed for screws as well as the slots
for mounting the motors. After the etching, the holes were drilled and the slots were cut out using a
forstner bit and then roughly cut out using a skill/scroll saw. Precision was not needed for the slots
because they are large openings mainly for access or clearance for wiring. The holes did require a little
precision but not much because they were made with tolerances in mind.

Kyle & Lee ​||​ 9

Figure 4​. Universal Laser Systems laser cutter/engraver. This machine
requires files to be in .dwg or .ai. The components must be scaled to be
1:1 in order to be printed correctly. This particular machine has a print
area of 32” x 18”. These could have been used to drill and make the
holes if multiple passes were done.

The same laser cutter was also used to cut out the arms of the pen plotter. Both wood and acrylic test
pieces were made. An example of the laser cut arms are shown in Figure 5. Multiple were made to test
different arm lengths and to optimize the center to center distance between the motor and the rod for arm
2. Different arm 1 lengths would give different belt tensions in the belt to control arm 2. For our final
product, the 207 mm C-C arm 1 resulted in the best belt tension. It is important to note that this
adjustment had to be done because we had ordered the wrong belt

Figure 5​. Arm 1 test pieces of different lengths and types. Stiffness
was a concern for our idea and so we slightly played around with the
idea of having slots to save weight but this would also come with the
cost of some stiffness. For larger arms this may become an issue, but
for our scale, only 8.5” x 11”, we learned that neither stiffness of the
arm was not an issue with the thickness of acrylic used. Also, we made
a ball roller shaft holder to alleviate any moment arms and weight.

Kyle & Lee ​||​ 10

A couple rods were also made simply using stock rods that are the same diameter of the output shafts of
the motors we had. This made it easy for us to couple with the output shaft of the motors. The rods were
cut to length using a horizontal band saw and then the ends were simply grinded down to have a small
chamfer. A couple cut small rods were then press fit into the timing pulleys. We did not want to
permanently press fit the pulleys to the motor so a shaft coupler was used.

The next manufactured piece was an aluminum shaft coupler shown below in Figure 6. This coupler
interfaced a ball roller with the end of the arm 2 pulley shaft. One end of the coupler was thread while the
other was a simply a drilled clearance hole for the shaft to sit in.

Figure 6​. A close image of arm two shaft rod. From top to bottom, the
components are a timing pulley, a hub mount, arm 1, two hub mounts,
arm 2, shaft coupler, and ball roller element. The shaft coupler could
be raised and lowered by using the threads to help balance both arms.

(a) Southbend MicroLathe (b) Tools used

Figure 7​. These tools were used to make the aluminum shaft coupler. Most operations were
done on the lathe (a). The tools used from left to right in (b) are a tap handle, tapping fluid,
¼-20 bottoming tap, number 7 standard drill bit, 6 mm drill bit, center drill, facing tool, turning
tool, parting tool, and chuck.

Kyle & Lee ​||​ 11

The servo mount was made by first getting the dimension of the servo. We could not find any drawings or
CAD models for the particular model of servo we had and so by using an MicroVu optical CMM,
coordinate measuring machine, we able to get the dimensions of the holes as well as other important
dimensions of the servo which we used to make the servo mount. The output of the file are in Appendix A
along with the drawings.

Figure 8​. A close image of the pen holder, servo, and servo mount
attached to arm 2. Arm 2 is slotted to make it easy to adjust how far
out the servo and a result the drawing point also moves out farther.

The last part manufactured was the pen holder. This was made using a 3D printer, specifically a
FlashForge 3D Printer Creator Pro.

Assembly

For the assembly of the entire product, see the drawings in Appendix A as well as the assembly video that
can be found on Youtube here, ​https://youtu.be/rqMjX1NTY1M​.

Kyle & Lee ​||​ 12

https://youtu.be/rqMjX1NTY1M

Electrical Wiring

The following section shows how we wired our microcontroller to each of our components. A collection
of male/male jumper wires were used with a breadboard to initially wire the microcontroller to the
motors, encoders and servo as shown in Figure 9. Ideally, if we had more time and a finalized product, all
of the jumper wire connections would be replaced with wires soldered to a perfboard. The wiring was
kept as organized and consistent as possible by color coding the jumper wires to the motor wires and
being aware of spacing out groups of wires coming from each motor and servo for easy visual recognition
of each connection to the microcontroller.

Figure 9​. Microcontroller wiring apparatus during the final stages of
testing our coaxial 2DOF pen plotter. A breadboard was initially used
to wire the motors and encoders to the Shoe of Brian purple
micropython board. Additionally, the power supply and servo pins are
connected to the blue Nucleo IHM04A1 motor driver board that is pin
connected on top of the white Nucleo L476RG.

Two seperate 50:1, 37Dx70L mm metal gearmotors with 64 CPR encoders were used and wired to our
microcontroller. Table 4 references the function of each color wire from the motor. The red and black
power and ground wires were connected to a blue Nucleo IHM04A1 motor expansion board that is pin
connected on top of the white Nucleo L476RG microcontroller. The remaining encoders were connected
to the purple Shoe of Brain micropython board connected to the bottom of the other two boards. Table 3
and Figure 10 reference the physical pin labels on the Shoe of Brain to the CPU pins names when
instantiating Encoder 1, 2, and the servo in micropython. Additionally, the table shows the specific timer

Kyle & Lee ​||​ 13

channels required for each pin connection which were referenced from the STM32L476 datasheet [6].
Timers 3 and 5 are not used for the encoder nor servo since these are needed for the motor PWM. Thus,
we found from Table 17 on the STM32L476 datasheet we could use timers 4 and 8 for each encoder.

Table 3.​ Encoder and Servo pin connections on Shoe of Brain purple micropython board [6].
Component Pin CPU Pin Timer Ch.

Encoder 1 C6 PC6 TIM8 1
C7 PC7 TIM8 2

Encoder 2
B6 PB6 TIM4 1
B7 PB7 TIM4 2

Servo A5 PA5 TIM2 1

Table 4.​ 50:1 Metal gearmotor 37Dx70L mm with 64 CPR Encoder wire labels [7].
Red motor power (connects to one motor terminal)

Black motor power (connects to the other motor terminal)

Green encoder GND

Blue encoder Vcc (3.5 – 20 V)

Yellow encoder A output

White encoder B output

Figure 10​. Custom Shoe of Brian micropython board: 2 layer board of
2.70 x 2.25 inches (68.6 x 57.1 mm) designed by Professor John
Ridgely.

Kyle & Lee ​||​ 14

All the motor encoder wires were connected to the Shoe of Brain screw terminals with male/male jumper
wires, as pictured in Figure 11. Since the servo only needs a small voltage to run, the servo leads are
connected to the 5V and GND pin terminals on the Nucleo L476RG microcontroller through the blue
Nucleo IHM04A1 motor driver board. The gearmotors consisted of 12V brushed DC motors with a 50:1
metal gearbox and an embedded quadrature encoder that provides a resolution of 64 counts per revolution
of the motor shaft, corresponding to 3200 counts per revolution of the gearbox’s 16 mm-long, 6
mm-diameter D-shaped output shaft. The encoder uses a two-channel Hall effect to sense the rotation of a
magnetic disk on a rear protrusion of the motor shaft [7].

Figure 11​. Shoe of Brian and Nucleo L476RG microcontroller wiring
apparatus during the final stages of testing our coaxial 2DOF pen
plotter for both motors and encoders. Note the servo GND and 5V
wires would be physically connected to the Nucleo IHM04A1 which is
not shown in the picture.

To program a MotorDriver class, a mini USB cable is connected to the bottom Shoe of Brian
MicroPython board and our Pololu motors are connected to the Motor A or B screw terminals on the
Nucleo driver board. The ST Microelectronics L6206 dual H-bridge motor driver chip datasheet was
referenced when initializing instances of each motor in our code. The link to the data sheet can be found
on page 2, Figure 2 of the datasheet in the References section [5]. As can be seen from Figure 12, the
motor is connected to pins OUT1A and OUT2A and physically wired to L6206 pins IN1A and IN2A on

Kyle & Lee ​||​ 15

the motor driver board. The microcontroller controls pins ENA, IN1A, and IN2A. For our MotorDriver
class, pin ENA is set to high to enable the motor, IN1A is set low, and a PWM signal is sent to IN2A by
setting it high, to power the motor in one direction. To control a pin on the Nucleo board for powering the
motor, the truth table in the L6206 datasheet was first referenced in Table 5 to find the connections
between the logic input pins on the L6206 and the CPU pins on the Nucleo motor control expansion
board. The INx pins were set up as regular push-pull outputs, but needed to be configured with af = 2.
This chosen alternate function was referenced from the STM32L476 datasheet on page 88, Table 17 [6].

Table 5.​ Connections between logic pins on L6206 and CPU pins on Nucleo IHM04A1 board [5].
L6206 Pin CPU Pin Timer Ch.

ENA/OCDA PA10 - -

IN1A PB4 TIM3 1

IN2A PB5 TIM3 2

ENB/OCDb PA10 - -

IN1B PA0 TIM5 1

IN2B PA1 TIM5 2

Figure 12​. Blue Nucleo IHM04A1 motor driver board wiring
apparatus during the final stages of testing our coaxial 2DOF pen
plotter for power supply terminals and motor channels..

Kyle & Lee ​||​ 16

Software Design

The following section describes how the code was developed and utilized during the project. The state
and task diagrams used to develop the code can be seen in Appendix B, and the doxygen on the actual
code itself is in Appendix C.

Motor Driver

The Pololu DC brushed motors are powered by 12 volts and a 3A current limit by connecting power from
a benchtop supply to the motor driver board with the Gnd and Vin screw terminals. Two MotorDriver
class instances on our motor_task.py were created for each motor with their corresponding timer channels
and CPU pins similar to the example below in Figure 13. In order to test the MotorDriver class in
motor_sam_dima.py, the following can be typed on a Micro-python terminal like Putty with a main
function created in motor_sam_dima.py to test the program. The test code is written to exercise the motor
driver and test for any bugs in the code. It needs to be an if_name_=='_main_' block to allow the user the
test the motor from an REPL as shown in Figure 14. Note that the motor_sam_dima.py file must be
imported first to operate the program from the REPL using the class MotorDriver.

Figure 13. An example of MotorDriver above called motor_1 on Timer 3 and connected
to the Nucleo board in pins B4 and B5. Additionally, you have a second MotorDriver
called motor_2 on Timer 5 and connected to the board on pins A0 and A1.

Figure 14. REPL command code to test our MotorDriver class code written in the
motor_sam_dima.py python file.

Two functions were written for the MotorDriver class: get_duty_cycle and set_duty_cycle. By calling
these function in our main function test code, the user can input an integer from -100 to 100 to control the
direction of the motor. A positive integer will spin the motor in one direction, negative integers will spin
it in the opposite direction and a value of 0 will not spin the motor. The speed can be controlled by
inputting a signed integer for parameter 'level' in the set_duty_cycle function which holds the PWM duty
cycle of the voltage sent to power the motor. Figure 15 shows the code that initializes MotorDriver. Timer
is a parameter that gets initialized with a chosen timer. Pin_1 parameter is initialized to enable the motor.
Pin_2 and Pin_3 are parameters for the second and third pins for IN1 direction 1 and IN2 direction 2 in
order to power the motor in one direction or the other. Refer to Mercurial for more details on the
functions written in the motor_sam_dima.py file.

Kyle & Lee ​||​ 17

Figure 15.​ Initialization of class MotorDriver.

The following figures contain sections of code written in a main function for motor_sam_dima.py in order
to test the functionality of our motors. A simple user interface was created on the REPL so that the user
can follow a series of steps to control the duty cycle sent to the each motor separately. Figure 16 contains
a while loop for the user to be able to select motor 1 or 2 to drive from the REPL. Figure 17 tests for the
correct duty cycle entered on the REPL after a motor number was selected. The code checks to make sure
an integer between -100 and 100 for the duty cycle was entered to ensure the correct PWM is sent to the
motor. Figure 18 is a function created in our main file which tests for correct user input. Essentially if the
user types in the wrong input type, such as a float instead of an integer, than the function will go through a
list of types available and return a string to the user saying the incorrect input was typed and which type
of input is needed. Lastly, Figure 19 was a custom exception error created to test for incorrect user input.

Kyle & Lee ​||​ 18

Figure 16​. Testing to see if user selects motor 1 or 2.

Figure 17.​ Testing correct user input duty cycle.

Figure 18​. Testing for correct user input type.

Kyle & Lee ​||​ 19

Figure 19​. Creating a custom exception error for incorrect user input.

Encoder

Another essential section of code our pen plotter runs with is an encoder.py file which implements a
quadrature encoder embedded in the 50:1 DC brushed motor for the Shoe of Brian purple MicroPython
board. The encoder power leads were connected to the GND and 3V3 leads on the purple Shoe of Brian
MicroPython board screw terminals. Next the encoder was connected to pins B6 and B7 of the Shoey
board's 25-wire screw terminal block. A second encoder was also connected to pins C6 and C7 on the
same screw terminal block. By connecting the encoders to these pins, a separate timer is set up to read an
encoder using these pins. Timer 3 and 5 are not used for the encoder since these are needed for the motor
PWM. Thus, we found from Table 17 on the STM32L476 datasheet we could use timers 4 and 8 for each
of each encoder below. Similarly to the MotorDriver class, Figure 20 shows two class instances created
on our motor_task.py file, specifying the timer channels and CPU pins assigned to each encoder.
Additionally, to test our Encoder class properly, the commands shown in Figure 21 were typed from an
REPL to run the main function inside our encoder.py file.

Figure 20. An example of Encoder called Encoder_1 on Timer 8 and connected to the
board in pins C6 and C7. Additionally, you have a second Encoder called Encoder_2 on
Timer 4 and connected to the board on pins B6 and B7.

Figure 21​. REPL command code to test our Encoder class code written in the encoder.py
python file. Test code is written in a main function to exercise the encoders and test for
any bugs in the code. It needs to be an if_name_=='_main_' block to allow the user the
test the encoders from an REPL. Note that you must also import the encoder.py file to
operate the encoder from the REPL using the encoder class Encoder.

The following code in Figure 22 initializes Encoder. The timer parameter is the Timer the user wants to
use. Pin_1 is the first pin on the board for encoder Ch A. Pin_2 is the second pin on the board for encoder
Ch B. The encoder.py file also included the following function: read and zero. The read function was a

Kyle & Lee ​||​ 20

method for returning the current position of the encoder and the zero function was a method for resetting
the position of the encoder to zero. Refer to Mercurial for more details on the functions written in the
encoder.py file.

Figure 22​. Initialization of class Encoder.

The following figures contain sections of code written in a main function for encoder.py in order to test
the functionality of the encoders. A simple user interface was created on the REPL so that the user can
follow a series of steps to see if the encoders were reading a correct position. Figure 23 contains a while
loop which allows the user to initially type a 1 for reading the position of both encoders or a 2 to zero
both encoders. Figure 24 is a state which runs the command to read and print the current position of both
encoders from the REPL. Figure 25 is another state which zeros the position of each encoder.

Kyle & Lee ​||​ 21

Figure 23.​ Testing for encoder input and main exit.

Figure 24​. Testing to see if both encoders read position.

Figure 25​. Testing to see if both encoders are zeroed.

Servo

The servo.py python file was written to implement a Servo class which has methods to control the
position of a servo by calculating and setting the duty cycle of the servo. The servo is used to control the
up and down pen motion movements when drawing. See the following example in Figure 26 and 27 for
creating an instance of class Servo, as well as the commands to run the test code in a main function
written in the servo.py file.

Kyle & Lee ​||​ 22

Figure 26. ​An example of Servo called Servo_1 on Timer 2 and connected to pin A5 on
the Shoe of Brian board. A class was written to initialize and control the position for the
HS-65MG used on our Pen plotter. A portion of our code was used from code found
online, which can be accessed in the References[8].

Figure 27. ​Test code is written in a main function to exercise the servo and test for any
bugs in the code. It needs to be an if_name=='main'_ block to allow the user to test the
servos from an REPL. Note that you must also import the servo file to operate the motor
from the REPL using the servo class Servo.

Additionally, the datasheet was referenced for the HS-65MG servo to set the specific frequency and
microsecond range of the servo for the initialization. In order to properly initialize the servo, the pin
where the servo is connected must be specified to support PWM, the frequency must be set, the minimum
and maximum signal length supported by the servo must be specified, and the angle between the
minimum and maximum positions must be set. Refer to the following code which properly initializes our
servo in Figure 28. Refer to Mercurial for more details on the functions written in the servo.py file.

Figure 28​. Initialization of class Servo.

The following figures contain sections of code written in a main function for servo.py in order to test the
functionality of the servo A simple user interface was created on the REPL so that the user can follow a
series of steps to see if the servo is moving to the correct position. Figure 29 allows the user to input an
angle from 0 to 180 degrees for the servo to move to. Figure 30 contains the function ​write_us ​which
solves for the period of the signal in seconds and duty cycle to send to the servo for position control.

Kyle & Lee ​||​ 23

Figure 31 solves for a specified angle in degrees or radians and calculates the signal length of the servo to
be sent as a parameter to the function ​write_us.

Figure 29​.​ ​Initialization of Servo and user angle input.

Figure 30​. Function which sets the duty cycle for the servo to control its position.

Figure 31​. Code that implements an angle unit conversion and solves for the ​write_us
function parameter.

Motor Task

The motor_task python file contained a class which runs a motor task function and initializes two
instances of our brushed DC motors and quadrature encoders to be used. After finding an optimal Kp
value for our DC motor, we implemented our controller code into a real-time scheduler and created a
motor_task.py file that can be used to control our controllers’ timing with additional tasks being added
without harming motor control response. More specifically, our controller task contains a class which
contains a motor task function. This task initializes two instances of DC motors and quadrature encoders
to be used and has two states to run the motor with the necessary data for finding the motor's position for
one state, and another state to run the motor without any data. Additionally, the optimal proportional gain
of Kp = 0.05 is set for each motor. Both encoder positions are then zeroed, and the setpoint is set to 3200
encoder ticks for both motors to turn one revolution when testing our motor_task.py file. The motor task
was run at a slower and slower rate until the controller’s performance noticeable worsened for an optimal
timing to run our motors at. Refer to the Limitations section for more results on the controller’s
performance.

Kyle & Lee ​||​ 24

Figure 32. Testing motor performance in ​main.py with a real-time scheduler from our
motor_task.py​ file.

Our class contains a motor task function and initializes two instances of DC motors and quadrature
encoders to be used. The code in Figure 32 calls the print_reponse function from our ​controller.py file to
print the time and actual position in the REPL, from which we copy pasted the data to produce the step
response plot. Also, the user can enter a specific period for each motor in the ​motor_periods listed
created. In the main file, a for loop is run for each motor number, where the period of 10 ms is set for
each motor. From this loop, both motors have an instance of the same motor controller task. A period of
10 ms resulted in the slowest rate at which motor performance is not significantly worse. Refer to
Mercurial for more details on the functions written in the motor_task.py file.

Kyle & Lee ​||​ 25

Controller

Our controller implements two motors to run under PID control. However, when conducting the motor
response plots, only the closed-loop proportional control was tested with no integral or derivative action,
as well as no load on the motors. The integral and derivative control functions were added in later to fine
tune our controller with our final pen plotter product. Our controller generated response plots by getting a
setpoint of a desired encoder position, then it iteratively obtained the latest motor position using the
encoder and set the duty cycle of the motor based on the error and the proportional gain, ​K​P​. Multiple ​K​P
values were tested to find the quickest and smooth response time. A ​K​P of 0.05 resulted in the best motor
performance as can be seen from Figure 33 below for a setpoint of one revolution or 3200 counts. Figure
34 also illustrates the response of the motor for too low and too high of Kp values.

Figure 33​. Optimal closed loop time step response plot for ​K​P = 0.05,
period = 50 ms, and setpoint of 3200 under no load. The actual
position reached around 3150 counts with a percent difference of
1.56%.

Kyle & Lee ​||​ 26

(a) Low ​K​P​ = 0.01 (b) High ​K​P​ = 3

Figure 34​. Motor response plots of a 50:1 Metal Gearmotor 37Dx70L mm with 64 CPR. Period
is kept constant and ​K​P is varied to show the response of the motor for very small and large ​K​P
values at a constant period of 50 ms under no load. The low ​K​P response never fully reaches the
setpoint and thus is not a desirable response. On the other hand, too high of a ​K​P may reach the
setpoint faster than the chosen ​K​P​, but it overshoots and oscillates, another undesirable effect.

Our motor task python file also implements two motors to run under PID control. We have a class that
contains a motor task function and initializes two instances of the motors and quadrature encoders to be
used. After the motor number instances are initialized, two states are created to run the motor with data
for one state, and another state without data. In the main file, a ​for loop is run for each motor number,
where the period is set for each motor. From this ​for ​loop, both motors have an instance of the same
motor controller task. A period of 10 ms resulted in the slowest rate at which motor performance is not
significantly worse, as can be seen from Figure 35 below. When conducting the motor response plots,
only the closed-loop proportional control was tested again, as well as no load on the motors.

Kyle & Lee ​||​ 27

(a) Faster Period = 10 ms (b) Slower period = 200ms

Figure 35​. Motor response tests of a 50:1 Metal Gearmotor 37Dx70L mm with 64 CPR. ​K​P is
kept constant at 0.05 and period is varied to show the response of the motor for small and large
motor task periods under no load. The slower period begins to oscillate in actual position when
the period is increased. On the other hand, although a faster period results in a smoother
response, it is not desirable to run at period for which a slower period can still yield sufficient
results for proper operation.

Figure 36 contains a portion of test code written as a main function to test our controller class. The main
function calls MotorDriver, Encoder, and Controller classes and sets a specific Kp and desired setpoint for
the motors to go to, upon which a step response plot was generated after time and position data were
printed to the REPL. Refer to Mercurial for more details on the functions written in the controller.py file.

Kyle & Lee ​||​ 28

Figure 36​. Main function test code that runs from PC python file ​response.py to test and
plot a motor step response plot for a given Kp and setpoint.

List of Operations

In order to properly run our 2DOF coaxial pen plotter product using our software, refer to the following
procedure below.

1. Draw a shape or picture in Inkscape.
2. Save Inkscape drawing as an HPGL format file.
3. Measure length of pen plotter first arm (L1) and second arm (L2).
4. Run the parse_HPGL.py Python file with the HPGL file in the same folder with the proper system

arguments.
5. Load the output text file onto the micropython Shoe of Brain board.
6. Open up an terminal emulator such as Putty or GTK Term on the computer.
7. Choose the category Serial set serial line /dev/ttyACM0. Set the speed and bits at 115200, 8, and

1. Set parity and flow control to None.
8. Reboot the board with Ctrl+D on the keyboard and follow the series of prompts on the REPL to

run the pen plotter and print the drawing.

Kyle & Lee ​||​ 29

Limitations

All of the python files written for our pen plotter are limited to working on specific timer channels and
pins for the microcontroller used on the project. The following classes which instantiate our motors,
encoders, servo and controller all have their own limitations described below.

Both of our motors from ​motor_sam_dima.py are limited to working only on timers 3 and 5 for a motor
frequency of 2000 Hz. Our encoders from ​encoder.py are limited to working with timers 4 and 8 on
channels 1 and 2 only. Our servo from ​servo.py is currently limited to working on channel 1, timer 2 and
pin A5 on the Shoe of Brain board. Our controller from ​controller.py was thoroughly tested to work for
an optimal Kp value of 0.05. This value was determined from a step response test by experimenting with
various Kp values and plotting the time and position data for one revolution of the motor set at 3200
encoder ticks. From the step response test for a Kp = 0.05 and a setpoint og 3200, the actual position
reached about 3150 with an error of 50 and a percent error of 1.56%. Too low of a KP response never
fully reaches the setpoint and thus is not a desirable response. On the other hand, too high of a KP may
reach the setpoint faster than the chosen KP, but it overshoots and oscillates, another undesirable effect. If
the motors are given too slow of a period, they begin to oscillate in actual position when the period is
increased. On the other hand, although a faster period results in a smoother response, it is not desirable to
run at period for which a slower period can still yield sufficient results for proper operation. The optimal
period found for our brushed DC motors was 10 ms. Lastly, our pen plotter will only accept HPGL format
files so pictures can only be drawn on programs which can save as this file format, such as Inkscape.

Location

The location of the mainpage file, along with the rest of the source code can be on our Mercurial webpage
[9]. From Mercurial, all the code files for each Lab can be found under ​browse on the left side of the
page. Additionally, refer to Appendix C for doxygen attachments of all the essential classes and functions
used for the Pen Plotter project. All the files can also be found on Github [10].

Results and Future Steps
In the end, unfortunately, we did not finish or meet all of our initial specifications. We met all our
specifications for this project except creating a legible drawing; however, we made great strides in
developing a project that could potential work well. There were also some specifications we did not meet
because they were stretch goals we had in mind.

When we wanted to get the pen plotter to go to a specific point, we were able to get the pen plotter to go
to that point. This was tested by using a grid paper with 0.5 in lines we had made and printed out. We
marked on both our device and the paper the origin of the global reference frame. With both aligned, we
were able to make the arm go to a single point and confirm on the grid paper that it would reach that point
within ±1 in. An example of the test and our final piece is shown below.

Kyle & Lee ​||​ 30

Figure 37​. Example of grid paper for calibration and testing as well as
our masterpiece abstract artwork.

The main issues we believe it did not work as a pen plotter are the stiction in the motors. We were not
able to make the arms move small increments without overshooting the setpoint. We tried testing many
different combinations of ​K​P​, ​K​I​, and ​K​D but since neither of us had much knowledge in controls, it was a
crude slightly more educated guess and check of trying to see what values resulted in a qualitative better
performance. Besides these issues, there were also some changes that could help make the plotter better.

If the gruesome kinematics wanted to be avoided, the second motor for arm 2 could be attached to arm
one to move arm 2. This would get rid of the dependence of the angle of arm 2 on the changes in the
angle of arm 1, but this would require a better design to hold the weight of the motor and avoid wire
entanglement. The small servo jig could have been made to simply make the pen go up and down instead
of a rotate up and down which resulted in some uncertainty on where the pen would go down as well as
the dependence of the arms being parallel to the plot space. A small V-block-esque feature could be also
be added to have the pen more well-seated and gripped. The ball roller element shaft coupler could have
had a deeper drilled hole for the link rod to sit in. Electrically, the final wiring could have been done on a
perfboard (or permaboard) but we were not sure if any changes would have to occur so we stuck with a
breadboard, wires, and jumper wires. The MDF used was a bit too soft and brittle, and so it did crack
from the wood screws. The belt did slip a little, and so some kind of belt tensioner would have helped
tremendously.

In terms of software, the command function or HPGL task could possibly be split into different tasks
since it is a complex task with states and substates.

Kyle & Lee ​||​ 31

Despite these, we did have successful results in other means. We created a relatively robust hardware
design as well a process that could be recreated. It is light, sturdy, easily disassembled and reassembled,
and all parts were easily accessible for maintenance. The greatest success was that we made a
meticulously well documented project. The drawings, code comments, templates,
images/figures/diagrams, and this report could probably be picked up easily by another person.

Throughout the project and even after, we were constantly thinking of cool ideas to expand this project.
We did derive two separate kinematic equations for two different coordinate systems. There may have
been better ways to approach this. We came across inverse kinematics but did not have the time to learn
it. We thought of changes that could help the mechanical design, and so iterations would be helpful.

The software control of the motors could be improved a several ways. Perhaps an interrupt motor
controller would have worked or a control gain scheduler. We definitely need to learn more controls,
maybe such as learning and using the Ziegler Nichols tuning method. A serial command based program to
control the pen plotter would be interesting. Even further, it would be very interesting to make the pen
plotter follow the movements of someone controlling a mouse. Left click and hold could mean pen down
and right click could be a dot or change color.

Our device has the foundation for modular arms so a modular belt system could be made. We also thought
about self calibrating the position of the pen by simply knowing the length and width of a piece of paper,
back-driving the motors to each corner in a particular order, and then, by using the change in the encoder
ticks, the program could define the coordinate system of the plot space. The thought of this is shown in
Appendix D along with the calculations.

We thoroughly enjoyed taking up this challenge. It was fun being to apply the knowledge of multiple
classes and skills into one project. We will continue to work on this project and perhaps take it even
further by implementing some of the ideas mentioned above.

Kyle & Lee ​||​ 32

References
[1] Bourke, Gregory. “2 DOF Articulated Pen Plotter.” Blogger, 1 Feb. 2014,

2dofpenplotter.blogspot.com/2014/02/2-dof-articulated-pen-plotter-beng.html.

[2] lingib. “CNC Dual Arm Plotter.” ​Instructables​, Autodesk, 12 June 2017,
www.instructables.com/id/CNC-Dual-Arm-Plotter/.

[3] Lacoste, Henri. “X-Y Plotter.” ​Instructables​, Autodesk, 14 Mar. 2015,
www.instructables.com/id/X-Y-Plotter-1/.

[4] “AxiDraw V3.” ​Evil Mad Scientist ​, shop.evilmadscientist.com/productsmenu/846.

[5] Marano, V. (2003). L6205, L6206, L6207 DUAL FULL BRIDGE DRIVERS. 1st ed. [ebook].
Available at:
http://www.st.com/content/ccc/resource/technical/document/application_note/b4/77/b1/88/ab/63/
40/4a/CD00004482.pdf/files/CD00004482.pdf/jcr:content/translations/en.CD00004482.pdf
[Accessed 9 Jun. 2018].

[6] STM32L476xx. (2018). 1st ed. [ebook] Available at:
http://www.st.com/content/ccc/resource/technical/document/datasheet/c5/ed/2f/60/aa/79/42/0b/D
M00108832.pdf/files/DM00108832.pdf/jcr:content/translations/en.DM00108832.pdf
 [Accessed 9 Jun. 2018].

[7] “Pololu - 50:1 Metal Gearmotor 37Dx70L Mm with 64 CPR Encoder.” ​Pololu Robotics &
Electronics​, www.pololu.com/product/2824.

[8] Dopieralski, Radomir. “A Micropython Library for Hobby Servo Control for ESP8266.”
Bitbucket​, bitbucket.org/thesheep/micropython-servo/src.

[9] Kyle, Dima, and Sam Lee . “Mercurial.” ​Mercurial​, 8 June 2018, wind.calpoly.edu/hg/mecha08.

[10] Lee, Sam, and Dima Kyle. “Coaxial-Pen-Penplotter.” ​GitHub​, 8 June 2018,

github.com/slee32/coaxial-pen-penplotter.git.

Kyle & Lee ​||​ 33

Appendix A: Design Drawings and Assembly
See attached.

1. Detailed drawings
2. Laser templates
3. Stock part drawings
4. Servo CMM

Kyle & Lee ​||​ 34

Appendix B: State Machines and Task Diagrams

Pen Plotter Task Diagram

Kyle & Lee ​||​ 35

HPGL State Diagram

Kyle & Lee ​||​ 36

Servo State Diagram

Motor State Diagram

Kyle & Lee ​||​ 37

Encoder State Diagram

Controller State Diagram

Kyle & Lee ​||​ 38

Appendix C: Code
The location of the mainpage file, along with the rest of the source code can be found from the following
link: ​http://wind.calpoly.edu/hg/mecha08​. From Mercurial, all the code files for each Lab can be found
under browse.Additionally, refer to Appendix C for doxygen printout of our code. They can also be found
on Github (​https://github.com/slee32/coaxial-pen-penplotter.git​).

The doxygen documentation is attached.

Kyle & Lee ​||​ 39

http://wind.calpoly.edu/hg/mecha08
https://github.com/slee32/coaxial-pen-penplotter.git

Appendix D: Calculations and Planning
See attached.

1. Kinematics derivation
a. First, aligned reference frame at arm 2 which rotates with arm 1
b. CPR
c. Calibration method and alternative method idea
d. 2nd derivation of kinematics but with a fixed frame at the end of arm 1

2. Planning thoughts and ideas

Kyle & Lee ​||​ 40

APPENDIX A: DESIGN DRAWINGS AND ASSEMBLY

The following documents contain the assembly, part drawings, laser templates, and purchased part
drawings.

2DOF PEN PLOTTER
NOTES
UNLESS OTHERWISE SPECIFIED:

ALL DIMENSIONS IN INCHES 1.
TOLERANCES2.
X.X = .1
X.XX = .01
X.XXX = .005
ANGLES = 2
INSIDE TOOL RADIUS 0.5 MAX3.
BREAK SHARP EDGES 0.3 MAX4.
DRAWINGS FOR PURCHASEDPARTS5.
AND STOCK PARTS ARE ATTACHED.

Dwg. #: 001
Lab Section: 04 Assignment #-1

Nxt Asb: N/A Chkd. By: ME STAFFDate: 5/19/2018
Drwn. By: SAM LEE & DIMA KYLETitle: PEN PLOTTER ASSEMBLY

Scale:ME 405 - SPR 2018
Cal Poly Mechanical Engineering

23 15 5 14

21

26

17

20

19

18

16

6

25248

4

10

1

13

11

28

2

9

3

7

27

22
2DOF PEN PLOTTER ASSEMBLY
FOR ASSEMBLY INSTRUCTIONS, SEE VIDEO COLLAPSE.

https://youtu.be/rqMjX1NTY1M
SEE REPORT FOR FULL BOM INCLUDING PRICE AND DISTRIBUTOR.

ITEM NO. DESCRIPTION QTY.
1 MOTOR 2
2 MOTOR HUB 4
3 MOTOR BRACKET 2
4 ARM 1 1
5 1428N24 2
6 1679K544 1
7 91292A112 12
8 90604A555 12
9 MOTOR PLATE 1
10 BASE PLATE 1
11 1088A32 2
12 DERIVED BELT 1
13 90048A192 8
14 ARM LINK ROD 1
15 ARM 2 1
16 SERVO 1
17 SERVO ARM 1
18 PEN HOLDER JIG 1
19 PEN SET SCREW 1
20 SHARPIE 1
21 SERVO BRACKET 1
22 5395T111 1
23 COUPLING ROD 1
24 6460K31 1
25 STUD HOLDER 1
26 92196A053 2
27 91292A027 6
28 92325A303 2

Dwg. #: 002
Lab Section: 04 Assignment #-1

Nxt Asb: N/A Chkd. By: ME STAFFDate: 5/19/2018
Drwn. By: SAM LEE & DIMA KYLETitle: EXPLODED ASSEMBLY

Scale:ME 405 - SPR 2018
Cal Poly Mechanical Engineering

 4.36
110.74

 8.00
203.20

4X .09 2.38 THRU ALL

2X 1.50
38.10

2X 1.00
25.40

 7.14
181.36

 .43
10.92

BASE PLATE
NOTES

MATERIAL: MDF1.
THICKNESS: 1/2 IN STK.2.

Dwg. #: 003
Lab Section: 04 Assignment #-1

Nxt Asb: N/A Chkd. By: ME STAFFDate: 5/19/2018
Drwn. By: DIMA KYLE & SAM LEETitle: BASE PLATE

Scale: 1:2ME 405 - SPR 2018
Cal Poly Mechanical Engineering

 8.00
203.20

 4.00
101.60

 1.00
25.40

 3.50
88.90

 1.00
25.40

 2.00
50.80

 .75
19.05

 3.75
95.25

 11.00
279.40

2X .25
6.35

 THRU ALL

6X .13
3.40

 THRU ALL

 2.00
50.80

12X R.25
6.35

 .58
14.80

 .58
14.80

 4.00
101.60

 .13
3.25

 .13
3.25

 4.45
113.03

 .25
6.35

MOTOR PLATE
NOTES

MATERIAL: MDF1.
THICKNESS: 1/2 IN STK.2.

Dwg. #: 04
Lab Section: 04 Assignment #-1

Nxt Asb: N/A Chkd. By: ME STAFFDate: 5/19/2018
Drwn. By: DIMA KYLE & SAM LEETitle: MOTOR PLATE

Scale: 1:2ME 405 - SPR 2018
Cal Poly Mechanical Engineering

 1.42
36

.24 6

3X .71
18

 .79
20

 .47
12

 2.48
63

 3.94
100

6X .13 3.40

R.71
18

 6X 60°

R.37
9.50

 BOLT CIRCLE

 8.90
226

2X R.24
6

ARM 1
NOTES

MATERIAL: ACRYLIC1.
THICKNESS: 1/4 IN STK.2.

Dwg. #: 005
Lab Section: 04 Assignment #-1

Nxt Asb: N/A Chkd. By: ME STAFFDate: 5/19/2018
Drwn. By: DIMA KYLE & SAM LEETitle: ARM 1

Scale: 1:1ME 405 - SPR 2018
Cal Poly Mechanical Engineering

 1.50
38.10

 .47
12

 8.86
225

 3.94
100

 1.00
25.40

3X .75
19.05

.24 6

6X .13 3.40

 2.46
62.50

R.37
9.50

BOLT CIRCLE

2X R.24
6

 .75
19.05

 7.36
186.90

 .50
12.70

2X .38
9.53

4X R.10
2.49

2X .20
4.98 6X 60°

B

2X .05 1.19 .16 4.06
0-80 UNF .12 3.05
 .11 2.79 X 90°, NEAR SIDE

 .39
10

 .13
3.18

 .55
14.05

DETAIL B
SCALE 2 : 1

ARM 2
NOTES

MATERIAL: ACRYLIC1.
THICKNESS: 1/4 IN STK.2.

Dwg. #: 06
Lab Section: 04 Assignment #-1

Nxt Asb: N/A Chkd. By: ME STAFFDate: 5/19/2018
Drwn. By: DIMA KYLE & SAM LEETitle: ARM 2

Scale: 1:1ME 405 - SPR 2018
Cal Poly Mechanical Engineering

 1.50
38.10

2X .196
4.98

 THRU ALL

 .75
19.05

 .04
1.02

 .38
9.53

 .25
6.35

 1.71
43.43

 .04
1.02

 .23
5.96

2X .08

2.01
 THRU ALL

 .10
2.54

 .63
16.07

 .25
6.35

SERVO BRACKET
NOTES

MATERIAL: AL 60611.
THICKNESS: 0.04 SHEET METAL2.
CORNERS MAY BE ROUNDED AND BENT3.
90 BENDS4.

Dwg. #: 007
Lab Section: 04 Assignment #-1

Nxt Asb: N/A Chkd. By: ME STAFFDate: 5/18/2018
Drwn. By: SAM LEE & DIMA KYLETitle: SERVO BRACKET

Scale: 2:1ME 405 - SPR 2018
Cal Poly Mechanical Engineering

.479
12.17 1.21

30.73

DD

.236
6

 3.15
80

.236
6

 1.26
32

.2362
6

 .35
9

.48
12.17

SECTION D-D
SCALE 1 : 1 .20 5.11 .75 19.05

1/4-20 UNC 1.00 25.40
 .30 7.62 X 90°, NEAR SIDE

RODS
NOTES

MATERIAL: A2 TOOL STEEL1.

Dwg. #: 08
Lab Section: 04 Assignment #-1

Nxt Asb: N/A Chkd. By: ME STAFFDate: 5/19/2018
Drwn. By: DIMA KYLE & SAM LEETitle: RODS

Scale: 1:1ME 405 - SPR 2018
Cal Poly Mechanical Engineering

2X .10
2.54

 .20
5.08

2X .09 2.16 THRU

 1.00
25.40

2X R.40
10.16

 .80
20.32

2X .80
20.322X .15

3.81

2X .15
3.91

2X .11
2.85

4X R.08
1.96

 .40
10.16

 .80
20.32

2X R.15
3.81

R.25
6.35

2X .25
6.35 2X .40

10.16

 .40
10.16

 .80
20.32

PEN HOLDER JIG 3D PRINT
NOTES

MATERIAL: ABS1.
TWO PARTS EPOXIED TOGETHER2.

Dwg. #: 09
Lab Section: 04 Assignment #-1

Nxt Asb: N/A Chkd. By: ME STAFFDate: 5/19/2018
Drwn. By: DIMA KYLE & SAM LEETitle: PEN HOLDER JIG

Scale: 2:1ME 405 - SPR 2018
Cal Poly Mechanical Engineering

BASE PLATE LASER TEMPLATE
NOTES

MATERIAL: MDF1.
THICKNESS: 1/2 IN STK.2.

Dwg. #: 003
Lab Section: 04 Assignment #-1

Nxt Asb: N/A Chkd. By: ME STAFFDate: 5/19/2018
Drwn. By: DIMA KYLE & SAM LEETitle: BASE PLATE

Scale: 1:1ME 405 - SPR 2018
Cal Poly Mechanical Engineering

MOTOR PLATE LASER TEMPLATE
NOTES

MATERIAL: MDF1.
THICKNESS: 1/2 IN STK.2.

Dwg. #: 04
Lab Section: 04 Assignment #-1

Nxt Asb: N/A Chkd. By: ME STAFFDate: 5/19/2018
Drwn. By: DIMA KYLE & SAM LEETitle: MOTOR PLATE

Scale: 1:1ME 405 - SPR 2018
Cal Poly Mechanical Engineering

ARM 1 LASER TEMPLATE
NOTES

MATERIAL: ACRYLIC1.
THICKNESS: 1/4 IN STK.2.

Dwg. #: 005
Lab Section: 04 Assignment #-1

Nxt Asb: N/A Chkd. By: ME STAFFDate: 5/19/2018
Drwn. By: DIMA KYLE & SAM LEETitle: ARM 1

Scale: 1:1ME 405 - SPR 2018
Cal Poly Mechanical Engineering

ARM 2 LASER TEMPLATE
NOTES

MATERIAL: ACRYLIC1.
THICKNESS: 1/4 IN STK.2.

Dwg. #: 06
Lab Section: 04 Assignment #-1

Nxt Asb: N/A Chkd. By: ME STAFFDate: 5/19/2018
Drwn. By: DIMA KYLE & SAM LEETitle: ARM 2

Scale: 1:1ME 405 - SPR 2018
Cal Poly Mechanical Engineering

36.8
1.45

 31.0
1.22

 15.5
0.61

 7.0
0.28

 6×M3

34.8
1.37

 L
 22.0

0.87
 30.7

1.21

 1.6
0.06

 7.8
0.31

 6.0
0.24

 12.0
0.47

6.0
0.24

 5.4
0.21

 5.0
0.20

 0.5
0.02

 2.9
0.11

 22.5
0.89

https://www.pololu.com/category/116/37d-mm-gearmotors

Gear ratio L

19:1 22 mm [0.87 in]

30:1 22 mm [0.87 in]

50:1 24 mm [0.94 in]

70:1 24 mm [0.94 in]

100:1 26.5 mm [1.04 in]

131:1 26.5 mm [1.04 in]

Scale: 1:1

Name:

Units:

Drawing date:

mm
[in]

Material:

© 2016 Pololu Corporationmix

37D mm Metal Gearmotors (without encoders)

27 July 2017 Po o u
Robotics & Electronics

l l1. To get the specified scale, select 100% in print settings.

36.8
1.45

 31.0
1.22

 15.5
0.61

 7.0
0.28

 6×M3

34.8
1.37

 L
 22.0

0.87
 30.7

1.21

 6.0
0.24

 12.0
0.47

6.0
0.24

 5.4
0.21

34.0
1.34

 15.4
0.61

https://www.pololu.com/category/116/37d-mm-gearmotors

Gear ratio L

19:1 22 mm [0.87 in]

30:1 22 mm [0.87 in]

50:1 24 mm [0.94 in]

70:1 24 mm [0.94 in]

100:1 26.5 mm [1.04 in]

131:1 26.5 mm [1.04 in]

Scale: 1:1

Name:

Units:

Drawing date:

mm
[in]

Material:

© 2016 Pololu Corporationmix

37D mm Metal Gearmotors (with encoders)

27 July 2017 Po o u
Robotics & Electronics

l l1. To get the specified scale, select 100% in print settings.

R
9.5

0.38

 http://www.pololu.com/catalog/product/1083

 6×#4-40

6

0.24

0.2

5

 2×#4-40

0.17

25.4

1

 4.2

12

0.47

s
PQ ll
o Eb e t ni

o
c
u

o & olt ri ccsR
o

for 6mm Shaft Pair, 4-40 Holes

5 August 2013

NOT TO SCALE

Name:

Units: mm

Item number:

[in]

Material:

© 2013 Pololu Corporationaluminum

Drawing date:

Pololu Universal Aluminum Mounting Hub 1083

R
15.5

0.61 http://www.pololu.com/catalog/product/1995

s
PQ ll
o Eb e t ni

o
c
u

o & olt ri ccsR
o

for 37D mm Metal Gearmotors

2 August 2013

NOT TO SCALE

Name:

Units: mm

Item number:

[in]

Material:

© 2013 Pololu CorporationAluminum

Drawing date:

Pololu Machined Aluminum Bracket 1995

0.26

0.22

5.7

6.5

1.45

R
18.4

0.72

 36.8

0.49

0.55

0.25

12.5
R

6.25

 14

0.20

6×M3

clearance

 5.15

 5.7

0.22

 3×M3

0.58

14.8

0.14

3.6

 3.3

0.13

0.26

6.5

1.45

36.8

 2.9

0.11

NUMBER
PART

Information in this drawing is provided for reference only.

http://www.mcmaster.com

3/4"

1 1/2" 1/2"

21/64"

For Size 8
Fastener

3"

3"

1 15/16"

0.06"

1 1/8"

1/2"

4 1/8"

1088A32
Inside-Corner Reinforcing

Bracket
© 2017 McMaster-Carr Supply Company

http://www.mcmaster.com

NUMBER
PART

Information in this drawing is provided for reference only.

http://www.mcmaster.com

15 mm

6 mm

M4 x 0.7 x 4 mm Length
Set Screw

20 mm

5395T111
Set Screw Rigid
Shaft Coupling

© 2013 McMaster-Carr Supply Company

http://www.mcmaster.com

NUMBER
PART

Information in this drawing is provided for reference only.

http://www.mcmaster.com

15 mm

21 mm

12 mm
for 10 mm Max.

Belt Width

16 Teeth
5 mm Pitch

32 mm

For 6 mm
Shaft

Diameter

18 mm

25.6 mm
Pitch Diameter

1428N24
T5 Series Timing

Belt Pulley
© 2016 McMaster-Carr Supply Company

http://www.mcmaster.com

NUMBER
PART

Information in this drawing is provided for reference only.

http://www.mcmaster.com

610 mm Outer Circle

5 mm
Pitch

122 Teeth

10 mm

1679K544
Trade Number T5-610-10

Dust-Free Timing Belt
© 2016 McMaster-Carr Supply Company

http://www.mcmaster.com

NUMBER
PART

Information in this drawing is provided for reference only.

http://www.mcmaster.com

0.25"

11/16"

1 3/8"
1 3/32"

1"

1/4"-20 Thread

1 3/4"

6460K31
Stud-Mount
Ball Transfer

© 2015 McMaster-Carr Supply Company

http://www.mcmaster.com

 Program: Untitled Date: Sat May 19 2018 Time: 22:18:39
 Units: in, dec deg

 Feature Actual Nominal Upper Lower Dev/Nom Out/Tol

 System 1 [MCS]
 Origin X 0.0000 0.0000 0.0000
 Origin Y 0.0000 0.0000 0.0000
 Origin Z 1.0512 1.0512 0.0000
 Skew 2.8590 2.8590 0.0000
 Pitch 0.0000 0.0000 0.0000
 Roll 0.0000 0.0000 0.0000

 Circle G [System 1]
 Center X 6.9695 6.9695 0.0000
 Center Y 6.2527 6.2527 0.0000
 Diameter 0.0788 0.0788 0.0000

 Circle H [System 1]
 Center X 7.2040 7.2040 0.0000
 Center Y 6.2532 6.2532 0.0000
 Diameter 0.0773 0.0773 0.0000

 Circle Center [System 1]
 Center X 7.0875 7.0875 0.0000
 Center Y 6.2863 6.2863 0.0000
 Diameter 0.0753 0.0753 0.0000

 Distance G to H [System 1]
 Distance X 0.2345 0.2345 0.0000
 Distance Y 0.0005 0.0005 0.0000
 Distance XY 0.2345 0.2345 0.0000

 1

 Program: Untitled Date: Sat May 19 2018 Time: 22:18:39
 Units: in, dec deg

 Feature Actual Nominal Upper Lower Dev/Nom Out/Tol

 Line HG L [System 1]
 Direction 0.1279 0.1279 0.0000

 Distance HG L to Cente [System 1]
 Distance X 0.0001 0.0001 0.0000
 Distance Y 0.0333 0.0333 0.0000
 Distance XY 0.0333 0.0333 0.0000

 Line edge [System 1]
 Direction -179.8626 -179.8626 0.0000

 Line Case Edge [System 1]
 Direction -179.5913 -179.5913 0.0000

 Line G Edge [System 1]
 Direction -89.8635 -89.8635 0.0000

 Line H Edge [System 1]
 Direction 89.6648 89.6648 0.0000

 Distance G to H Edge [System 1]
 Distance X 0.4436 0.4436 0.0000
 Distance Y 0.0011 0.0011 0.0000
 Distance XY 0.4436 0.4436 0.0000

 Distance Edge to Case [System 1]
 Distance X 0.0004 0.0004 0.0000
 Distance Y 0.1803 0.1803 0.0000
 Distance XY 0.1803 0.1803 0.0000

 Distance Edge to HG Li [System 1]
 Distance X 0.0002 0.0002 0.0000
 Distance Y 0.1099 0.1099 0.0000
 Distance XY 0.1099 0.1099 0.0000

 2

controller.Controller Class Reference

This class implements closed-loop proportional control to run as a generic controller for

a Shoe of Brian purple MicroPython board that is pin connected on top with a white

Nucleo L476RG board. More...

Public Member Functions

def __init__ (self)

Constructor method which sets the proportional gain, inital setpoint, actual

setpoint, error signal, actuation signal with a saturation limit. More...

def algorithm (self, actual)

Algorithm is a function that subtracts the measured parameter of the device

from the desired setpoint to return an error signal, which is then multiplied by

the proportional gain input value to solve for an actuation value. More...

def set_gain (self, gain)

This function sets the user inputed Kp value of the device to a variable named

gain which represents the proportional gain of the device. More...

def set_KI (self, K_I)

This function sets the user inputed K_I value of the device to a variable named

gain which represents the integral gain of the device. More...

def set_KD (self, K_D)

This function sets the user inputed K_D value of the device to a variable named

gain which represents the derivative gain of the device. More...

def set_KW (self, K_W)

This function sets the user inputed K_W value of the device to a variable named

gain which represents the anti_windup gain of the device. More...

def set_setpoint (self, point)

Method which creates lists for the actual value being measured, time, and error

values to be used for plotting a step response of the device. More...

def print_response (self)

Method which runs step response tests by sending a signal through the USB

serial port to the MicroPython board, reading the resulting actual and time data,

and plotting the step response.

def get_response (self)

ME405 Library: controller.Controller Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

1 of 7 6/8/18, 5:18 PM

Method that takes the time values and actual measured motor position values,

and puts them into a list for getting time and position response of the motor.

More...

Public Attributes

K_P

Input for proportional gain of the motor.

setpoint

Desired position of the motor.

error

Difference in the setpoint of the motor from its measured position.

actuation

Signal sent to the motor to control the magnitude and direction of its torque.

actual

Measured position of the motor after the setpoint desired is inputed.

act_value

time

error_list

delta_time

Response time of motor run for one revolution (setpoint=4000) for the step

response test.

delta

Last motor position measured from step response test.

accuracy

Percent difference from setpoint position and actual motor position.

error_sum

Error sum for integral control.

K_I

Integral control constant.

prev_error

Previous error used for derivative control.

d_error

Delta err for derivative control.

t

ME405 Library: controller.Controller Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

2 of 7 6/8/18, 5:18 PM

Time of control.

prev_t

Previous t of control.

dt

Delta time for derivative control.

K_D

Derivative control constant.

act_star

A* for K anti-windup.

K_W

Anti-windup control constant.

proportional

integral

derivative

prev_err

Detailed Description

This class implements closed-loop proportional control to run as a generic controller for

a Shoe of Brian purple MicroPython board that is pin connected on top with a white

Nucleo L476RG board.

This class has the following methods: init(), algorithm(), set_gain(),

set_KI(),set_KD(),set_KW(), set_setpoint(), print_response(), get_response().

The constructor first sets all the necessary parameters for the controller to work.

Algorithm returns an actuation value that can be generally set to anything as a generic

controller. The algorithm method takes the subtraction of the setpoint parameter (motor

position input for this project) and the actual measured parameter (measured motor

position for this project). Set_setpoint creates arrays for specific parameters and sets

the setpoint, which is the desired position for the DC motor in our case. Set_gain sets

the proportional control gain for the device. Get_response and print_response are

methods which run step response tests each time the enter key is pressed by the user,

which reads the resulting data and prints a list of time, actual position, and error values

in the serial port terminal.

This controller is setup for proportional, integral, derivative control. The anti-windup

features are not completely developed.

ME405 Library: controller.Controller Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

3 of 7 6/8/18, 5:18 PM

The only anti-windup code simply puts a saturation limit of the error_sum to the duty

cycle divided by the K_I.

 The following are not actual parameters specific to the code, but are meant
 to describe important attributes for the Controller class.
 @param K_P User input proportional gain of the device
 @param setpoint Input parameter to device (desired position of motor)
 @param error Error signal or the difference in setpoint from the
 measured setpoint.This will be the measured motor location subtracted
 from the initial setpoint location.
 @param actuation Actuation signal to device as a result from the error
 signal multiplied by control gain. This will be a signal sent
 to the motor to control magnitude and direction of motor torque.
 @param actual Measured parameter of device (motor position)
 @param act_value List of measured motor positions
 @param time List for how long motor has run for
 @param error_list List of error values between each controller run
 @param delta_time Total time elapsed for motor run at one revolution
 @param delta Last actual motor position measured at the end of each
 test conducted.
 @param accuracy Percent difference from the setpoint and actual
 values at the last motor position measured.
 @param K_I Integral control constant

Constructor & Destructor Documentation

def controller.Controller.__init__ (self)

Constructor method which sets the proportional gain, inital setpoint, actual setpoint,

error signal, actuation signal with a saturation limit.

Lists are initialized to extract actuation signal, time, and error data along with setting

a change in time paramter for generating response plots of the motor over the

period of time it is run for.

Member Function Documentation

ME405 Library: controller.Controller Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

4 of 7 6/8/18, 5:18 PM

def controller.Controller.algorithm (self,

actual

)

Algorithm is a function that subtracts the measured parameter of the device from

the desired setpoint to return an error signal, which is then multiplied by the

proportional gain input value to solve for an actuation value.

This actuation signal which controls the magnitude and direction of the device

torque is limited to be within -100 and 100 before getting returned.

Parameters

actual The actual position of the object of interest

Returns

actuation The level to set the actuation for control.

def controller.Controller.get_response (self)

Method that takes the time values and actual measured motor position values, and

puts them into a list for getting time and position response of the motor.

Returns

[time, act_value] Returns a list of a time and position

def controller.Controller.set_gain (self,

gain

)

This function sets the user inputed Kp value of the device to a variable named gain

which represents the proportional gain of the device.

Parameters

gain The gain for the proportional control.

ME405 Library: controller.Controller Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

5 of 7 6/8/18, 5:18 PM

def controller.Controller.set_KD (self,

K_D

)

This function sets the user inputed K_D value of the device to a variable named gain

which represents the derivative gain of the device.

Parameters

K_D The gain for the derivative control.

def controller.Controller.set_KI (self,

K_I

)

This function sets the user inputed K_I value of the device to a variable named gain

which represents the integral gain of the device.

Parameters

K_I The gain for the integral control.

def controller.Controller.set_KW (self,

K_W

)

This function sets the user inputed K_W value of the device to a variable named gain

which represents the anti_windup gain of the device.

Parameters

K_w The gain for the anti_windup control.

ME405 Library: controller.Controller Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

6 of 7 6/8/18, 5:18 PM

def controller.Controller.set_setpoint (self,

point

)

Method which creates lists for the actual value being measured, time, and error

values to be used for plotting a step response of the device.

Commented lists to hold time, error, and actual position for response These are

commented out for now to save memory.

Parameters

point Point to set as the setpoint.

The documentation for this class was generated from the following file:

controller.py

ME405 Library: controller.Controller Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

7 of 7 6/8/18, 5:18 PM

cotask.Task Class Reference

This class implements behavior common to tasks in a cooperative multitasking system

which runs in MicroPython. More...

Public Member Functions

def __init__ (self, run_motor, name='NoName', priority=0, period=None,

profile=False, trace=False)

Initializes a task object, saving copies of constructor parameters and preparing

an empty dictionary for states. More...

def schedule (self)

This method is called by the scheduler; it attempts to run this task. More...

def ready (self)

This method checks if the task is ready to run. More...

def reset_profile (self)

This method resets the variables used for execution time profiling. More...

def get_trace (self)

This method returns a string containing the task's transition trace. More...

def go (self)

Method to set a flag so that this task indicates that it's ready to run. More...

def __repr__ (self)

This method converts the task to a string for diagnostic use. More...

Public Attributes

name

The name of the task, hopefully a short and descriptive string. More...

priority

The task's priority, an integer with higher numbers meaning higher priority. More...

period

The period, in microseconds, between runs of the task's run() method. More...

go_flag

Flag which is set true when the task is ready to be run by the scheduler.

ME405 Library: cotask.Task Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

1 of 6 6/8/18, 5:20 PM

Detailed Description

This class implements behavior common to tasks in a cooperative multitasking system

which runs in MicroPython.

The ability to be scheduled on the basis of time or an external software trigger or

interrupt is implemented, state transitions can be recorded, and run times can be

profiled. The user's task code must be implemented in a generator which yields the

state (and the CPU) after it has run for a short and bounded period of time.

Example:

 1 def task1_fun ():
 2 ''' Simple and silly task which just toggles its state '''
 3 state = 0
 4 while True:
 5 if state == 0:
 6 state = 1
 7 elif state == 1:
 8 state = 0
 9 yield (state)
 10
 11 # In main routine. This task runs twice per second
 12 task1 = cotask.Task (task1_fun, name = 'Task 1', priority = 1,
 13 period = 500, profile = True, trace = True)
 14 cotask.task_list.append (task1)
 15 while True:
 16 cotask.task_list.pri_sched ()

Constructor & Destructor Documentation

ME405 Library: cotask.Task Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

2 of 6 6/8/18, 5:20 PM

def cotask.Task.__init__ (self,

run_motor,

name = 'NoName',

priority = 0,

period = None,

profile = False,

trace = False

)

Initializes a task object, saving copies of constructor parameters and preparing an

empty dictionary for states.

Parameters

run_fun The function which implements the task's code. It must be a

generator which yields the current state

name The name of the task, by default 'NoName.' This should really be

overridden with a more descriptive name by the user

priority The priority of the task, a positive integer with higher numbers

meaning higher priority (default 0)

period The time in milliseconds between runs of the task if it's run by a timer

or None if the task is not run by a timer. The time can be given in a

float or int; it will be converted to microseconds for internal use by

the scheduler

profile Set to True to enable run-time profiling

trace Set to True to generate a list of transitions between states. Note:

This slows things down and allocates memory.

Member Function Documentation

ME405 Library: cotask.Task Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

3 of 6 6/8/18, 5:20 PM

def cotask.Task.__repr__ (self)

This method converts the task to a string for diagnostic use.

It shows information about the task, including execution time profiling results if

profiling has been done.

def cotask.Task.get_trace (self)

This method returns a string containing the task's transition trace.

The trace is a set of tuples, each of which contains a time and the states from and to

which the system transitioned.

Returns

A possibly quite large string showing state transitions

def cotask.Task.go (self)

Method to set a flag so that this task indicates that it's ready to run.

This method may be called from an interrupt service routine or from another task

which has data that this task needs to process soon.

def cotask.Task.ready (self,

bool

)

This method checks if the task is ready to run.

If the task runs on a timer, this method checks what time it is; if not, this method

checks the flag which indicates that the task is ready to go. This method may be

overridden in descendent classes to implement some other behavior.

ME405 Library: cotask.Task Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

4 of 6 6/8/18, 5:20 PM

def cotask.Task.reset_profile (self)

This method resets the variables used for execution time profiling.

It's also used by init() to create the variables.

def cotask.Task.schedule (self,

bool

)

This method is called by the scheduler; it attempts to run this task.

If the task is not yet ready to run, this method returns False immediately; if this task

is ready to run, it runs the task's generator up to the next yield() and then returns

True.

Returns

True if the task ran or False if it did not

Member Data Documentation

cotask.Task.name

The name of the task, hopefully a short and descriptive string.

cotask.Task.period

The period, in microseconds, between runs of the task's run() method.

If the period is None, the run() method won't be run on a time basis but will instead

be run by the scheduler as soon as feasible after code such as an interrupt handler

calls the go() method.

ME405 Library: cotask.Task Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

5 of 6 6/8/18, 5:20 PM

cotask.Task.priority

The task's priority, an integer with higher numbers meaning higher priority.

The documentation for this class was generated from the following file:

cotask.py

ME405 Library: cotask.Task Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

6 of 6 6/8/18, 5:20 PM

cotask.TaskList Class Reference

This class holds the list of tasks which will be run by the task scheduler. More...

Public Member Functions

def __init__ (self)

Initialize the task list. More...

def append (self, task)

Append a task to the task list. More...

def rr_sched (self)

This scheduling method runs tasks in a round-robin fashion. More...

def pri_sched (self)

This scheduler runs tasks in a priority based fashion. More...

def __repr__ (self)

Create some diagnostic text showing the tasks in the task list.

Public Attributes

pri_list

The list of priority lists. More...

Detailed Description

This class holds the list of tasks which will be run by the task scheduler.

The task list is sorted by priority so that the scheduler can efficiently look through the

list to find the highest priority task which is ready to run at any given time. Tasks can

also be scheduled in a simpler "round-robin" fashion.

An example showing the use of the task list is given in the documentation for class

Task.

Constructor & Destructor Documentation

ME405 Library: cotask.TaskList Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

1 of 3 6/8/18, 5:20 PM

def cotask.TaskList.__init__ (self)

Initialize the task list.

This creates the list of priorities in which tasks will be organized by priority.

Member Function Documentation

def cotask.TaskList.append (self,

task

)

Append a task to the task list.

The list will be sorted by task priorities so that the scheduler can quickly find the

highest priority task which is ready to run at any given time.

Parameters

task The task to be appended to the list

def cotask.TaskList.pri_sched (self)

This scheduler runs tasks in a priority based fashion.

Each time it is called, it finds the next task which is ready to run and calls that task's

run() method.

ME405 Library: cotask.TaskList Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

2 of 3 6/8/18, 5:20 PM

def cotask.TaskList.rr_sched (self)

This scheduling method runs tasks in a round-robin fashion.

Each time it is called, it goes through the list of tasks and gives each of them a

chance to run. This scheduler runs the highest priority tasks first, but that's not

important to a round-robin scheduler, as they are all given a chance to run each time

through the list, and it takes about the same amount of time before each is given a

chance to run again.

Member Data Documentation

cotask.TaskList.pri_list

The list of priority lists.

Each priority for which at least one task has been created has a list whose first

element is a task priority and whose other elements are references to task objects at

that priority.

The documentation for this class was generated from the following file:

cotask.py

ME405 Library: cotask.TaskList Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

3 of 3 6/8/18, 5:20 PM

encoder.Encoder Class Reference

This class implements a quadrature encoder for a Shoe of Brian purple MicroPython

board that is pin connected on top with a white Nucleo L476RG board. More...

Public Member Functions

def __init__ (self, timer, pin_1, pin_2)

Creates a motor driver by initializing GPIO pins and gets first initial position.

More...

def read (self)

Method for returning the correct current position of the encoder. More...

def zero (self)

Method for reseting the position of the ecoder to zero. More...

Public Attributes

tim

The Timer desired for the encoder with period=0xFFF, prescalar=0.

pinENa

Pin object to work with Channel 1 of quadrature encoder.

pinENb

Pin object to work with Channel 2 of quadrature encoder.

ch1

ch2

position

A class attribute for the encoder's current position.

last_pos

A class attribute for the encoder's last position.

delta

A class attribute for encoder's change in position.

read_value

A read attribute to hold the current value of encoder's position.

ME405 Library: encoder.Encoder Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

1 of 3 6/8/18, 5:20 PM

Detailed Description

This class implements a quadrature encoder for a Shoe of Brian purple MicroPython

board that is pin connected on top with a white Nucleo L476RG board.

To create an instance of class Encoder, see the following example. Class methods are:

read(self) Returns the motors current position zero(self) Zeros the motor's position

Limited to Channel 1 and 2.

Constructor & Destructor Documentation

def encoder.Encoder.__init__ (self,

timer,

pin_1,

pin_2

)

Creates a motor driver by initializing GPIO pins and gets first initial position.

Ensure that the timer and pins used correspond to 1, Where the encoder is

connected to the board and 2. Timer works for those pins. See Table 17 To create an

instance of class Encoder. See the following example.

EX:

 1 Encoder_1 = Encoder(8,'PC6','PC7')

Creating an instance of Encoder called Encoder_1 on Timer 8 and connected to the

board in pins C6 and C7.

Parameters

timer The timer wanted to be used.

pin_1 The first pin on the board for encoder Ch A.

pin_2 The second pin on the board for encoder Ch B.

ME405 Library: encoder.Encoder Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

2 of 3 6/8/18, 5:20 PM

Member Function Documentation

def encoder.Encoder.read (self)

Method for returning the correct current position of the encoder.

Returns

position The current position of the encoder

def encoder.Encoder.zero (self)

Method for reseting the position of the ecoder to zero.

Zeros position

The documentation for this class was generated from the following file:

encoder.py

ME405 Library: encoder.Encoder Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

3 of 3 6/8/18, 5:20 PM

io_funcs.InputError Class Reference

This is a custom exception error for incorrect user input. More...

Inheritance diagram for io_funcs.InputError:

[legend]

Collaboration diagram for io_funcs.InputError:

[legend]

Public Member Functions

def __init__ (self, message, errors)

This method initializes the input error. More...

Public Attributes

errors

Call the base class constructor with the parameters it needs. More...

Detailed Description

This is a custom exception error for incorrect user input.

Constructor & Destructor Documentation

ME405 Library: io_funcs.InputError Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

1 of 2 6/8/18, 5:20 PM

def io_funcs.InputError.__init__ (self,

message,

errors

)

This method initializes the input error.

Parameters

message The message you want to display to get input

errors The errors for a particular input error

Member Data Documentation

io_funcs.InputError.errors

Call the base class constructor with the parameters it needs.

Errors for a particular InputError

The documentation for this class was generated from the following file:

io_funcs.py

ME405 Library: io_funcs.InputError Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

2 of 2 6/8/18, 5:20 PM

main.py File Reference

This is the main file for the Lab 1 that contains the code to create a class Encoder.

More...

Functions

def main.servo_func ()

Servo task function. More...

def main.command_func ()

This is the main command function. More...

Variables

int main.lift = 30

int main.tolerance = 20

main.pen_servo = servo.Servo('PA5',prescaler=4.5, freq=25, min_us=665,

max_us=2360, angle=190)

bool main.pen_cal = True

int main.n = 0

main.answer = io_funcs.get_input(str,'Calibrated? [y/n] ')

main.angle = io_funcs.get_input(int,'Angle? [degrees] ')

main.pen_angle = angle

main.down_angle = angle

main.up_angle = down_angle+lift

bool main.file_search = True

main.file_name = io_funcs.get_input(str,'File name? [file.txt] ')

main.file = open(file_name,'r')

main.motor_1_task = motor_task.Motor_control_task(0)

string main.mname1 = 'Motor_'

main.motor_2_task = motor_task.Motor_control_task(1)

string main.mname2 = 'Motor_'

bool main.cal = True

main.position

main.actual

ME405 Library: main.py File Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html...

1 of 3 6/8/18, 5:22 PM

main.setpoint

bool main.run_wait = True

main.servo_task

main.command_task

string main.servo_state = ''

main.vcp = pyb.USB_VCP()

bool main.end = False

Detailed Description

This is the main file for the Lab 1 that contains the code to create a class Encoder.

This is the main file that runs the pen plotter.

The class Encoder can read the current position and also zero the position.

Authors

Sam Lee and Dima Kyle

Function Documentation

def main.command_func ()

This is the main command function.

It takes in a two motor task instances and a file, a servo_state to trigger servo state

changes, and an end variable (not used).

It takes in a file and reads it line by line. Parses it by the command. The commands

are the main states of this task. There are 5 main states: NEXT, IN, PU, PD, SP. IN and

SP are neglected. In NEXT, the next line of the file is read and parsed to get the next

command and maybe points. PU brings the pen up after reaching a setpoint PD

brings the motor to a point, brings the pen down, and then traces the following

points.

ME405 Library: main.py File Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html...

2 of 3 6/8/18, 5:22 PM

def main.servo_func ()

Servo task function.

This function has 2 (3 including a done state). The three states are Up, Down, and

Done. servo_state is what causes the state to change This function receives a class

instance of a servo and the angles that correspond with down and up.

Variable Documentation

main.command_task

Initial value:

 1 = cotask.Task(command_func, name = 'Command Task', priority=2,
 2 period = 50, profile = True)

main.servo_task

Initial value:

 1 = cotask.Task(servo_func, name = 'Servo Task', priority=1,
 2 period = 50, profile = True)

ME405 Library: main.py File Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html...

3 of 3 6/8/18, 5:22 PM

motor_sam_dima.MotorDriver Class Reference

This implements a DC motor at a frequency of 2000 Hz for the Shoe of Brian purple

MicroPython board that is pin-connected on top with a white Nucleo L476RG board.

More...

Public Member Functions

def __init__ (self, timer, pin_1, pin_2, pin_3)

Creates a motor driver by initializing GPIO pins and turning the motor off for

safety. More...

def get_duty_cycle (self)

This function simply returns the duty cycle of the motor. More...

def set_duty_cycle (self, level)

This method sets the duty cycle to be sent to the motor to the given level.

More...

Public Attributes

pinEN

Open-drain output pin set high to enable the DC motor.

pinIN1

Regular push-pull output pin set to low and configured with af=2 to control the

direction of PWM signal sent to the motor. More...

pinIN2

Regular push-pull output pin set to high and configured with af=2 to power the

motor in one direction.

Hz

The desired frequency of the pulse in the pulse width modulation.

tim

The Timer wanted for the motor at a specified frequency.

ch1

ch2

duty_cycle

ME405 Library: motor_sam_dima.MotorDriver Cla... file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

1 of 4 6/8/18, 5:21 PM

Detailed Description

This implements a DC motor at a frequency of 2000 Hz for the Shoe of Brian purple

MicroPython board that is pin-connected on top with a white Nucleo L476RG board.

Class methods are: set_duty_cycle(level) get_duty_cycle() ==> returns the duty_cycle

of the motor

Limited to Timers 3 and 5

Constructor & Destructor Documentation

ME405 Library: motor_sam_dima.MotorDriver Cla... file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

2 of 4 6/8/18, 5:21 PM

def motor_sam_dima.MotorDriver.__init__ (self,

timer,

pin_1,

pin_2,

pin_3

)

Creates a motor driver by initializing GPIO pins and turning the motor off for safety.

We will be using DC motors that will be powered with 12 volts and a 0.5 amp current

limit by connecting power from a benchtop supply to the motor driver board with the

Gnd and Vin screw terminals. To program a MotorDriver class, a USB cable is

connected to the bottom MicroPython board and a DC motor is connected to the

Motor A or B screw terminals in the driver board. The ST Microelectronics L6206 dual

H-bridge motor driver chip datasheet was referenced. The link to the data sheet can

be found on page 2, Figure 2 from the following link.

L6206 Datasheet: https://www.google.com/search?q=ST+Microelectronics+

L6206+dual+H-bridge+motor+driver+chip&oq=st+micro&aqs=chrome.1.

69i57j69i59j0l4.3671j0j7&sourceid=chrome&ie=UTF-8

From the diagram, the motor is connected to pins OUT1A and OUT2A. The

microcontroller controls pins ENA, IN1A, and IN2A

To properly initialize an instance of MotorDriver, refer to the example below. EX:

 1 motor_1 = MotorDriver(3,'PA10','PB4','PB5')

This makes an instance of MotorDriver using Timer 3, PA10 enables the motor and

PB4 and PB5 are used control the motor in one particular direction.

Parameters

timer Timer to be used for the motor

pin_1 First pin to enable the motor. PinEn is to be the output pin at pin_1.

pin_2 Second pin for IN1 direction 1. PinIN1 is to be the output pin at pin_1.

pin_3 Third pin for IN2 direction 2. PinIN2 is to be the output pin at pin_2.

ME405 Library: motor_sam_dima.MotorDriver Cla... file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

3 of 4 6/8/18, 5:21 PM

Member Function Documentation

def motor_sam_dima.MotorDriver.get_duty_cycle (self)

This function simply returns the duty cycle of the motor.

Returns

duty_cycle The duty cycle of the motor as a percentage

def motor_sam_dima.MotorDriver.set_duty_cycle (self,

level

)

This method sets the duty cycle to be sent to the motor to the given level.

Positive values cause torque in one direction, negative values in the opposite

direction.

Parameters

level A signed integer holding the duty cycle of the motor (%)

Member Data Documentation

motor_sam_dima.MotorDriver.pinIN1

Regular push-pull output pin set to low and configured with af=2 to control the

direction of PWM signal sent to the motor.

The documentation for this class was generated from the following file:

motor_sam_dima.py

ME405 Library: motor_sam_dima.MotorDriver Cla... file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

4 of 4 6/8/18, 5:21 PM

motor_task.Motor_control_task Class Reference

Class which contains a motor task function. More...

Public Member Functions

def __init__ (self, motor_num)

This constructor method initializes two instances of DC motors and two

quadruture encoders. More...

def run_motor (self)

Motor task function consisting of two states. More...

Public Attributes

control

motor

encoder

motor_number

Motor number which specifies which motor task is being run.

state

Motor control task to start in state 0 to run the motors with data.

position

Position of the motor initially.

iterate

Initial setpoint. More...

limit

Limit on the amount of iterations the motor is outputting position data for. More...

actuation

Detailed Description

Class which contains a motor task function.

This task initializes two instances of DC motors and quadruture encoders to be used and

has two states to run the motor with the necessary data for finding the motor's position

ME405 Library: motor_task.Motor_control_task C... file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

1 of 3 6/8/18, 5:21 PM

for one state, and another state to run the motor without any data. In the main.py file,

a for loop is run for each motor number, where the period is set for each motor. From

this for loop, both motors have an instance of the same motor controller task.

There is a method run_motor() to run the motor's in a scheduler.

Constructor & Destructor Documentation

def motor_task.Motor_control_task.__init__ (self,

motor_num

)

This constructor method initializes two instances of DC motors and two quadruture

encoders.

Additionally, the optimal proportional gain of Kp is set for each motor. Both encoder

positions are then zeroed, and the setpoint is set for the encoder ticks. Lastly, all

variables used for the motor task function run_motor are initialized, including

motor_num, state, position, iterate, and limit.

Parameters

motor_number Motor number parmater that specifies which motor and

encoder is being initialized for each task.

These are values that can be changed in the code itself.

Parameters

state The state for which the motor control task is in.

position Initializing the motor position to start at 0.

iterate Initializing the iterate variable to start at 0.

limit Limit on the amount of iterations the motor is running position data

for.

The KP, KI, and KD can be changed for the situation required.

Member Function Documentation

ME405 Library: motor_task.Motor_control_task C... file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

2 of 3 6/8/18, 5:21 PM

def motor_task.Motor_control_task.run_motor (self)

Motor task function consisting of two states.

The first state runs the motors with data for a specific amount of iterations. Once the

amount of iterations have reached a specific limit, then the task will go into the next

state 1 which runs the motors without any data. The motor_number, position and

actuation values are then printed before the state is yielded.

Member Data Documentation

motor_task.Motor_control_task.iterate

Initial setpoint.

Iteration limit for outputting data

motor_task.Motor_control_task.limit

Limit on the amount of iterations the motor is outputting position data for.

The documentation for this class was generated from the following file:

motor_task.py

ME405 Library: motor_task.Motor_control_task C... file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

3 of 3 6/8/18, 5:21 PM

parse_hpgl.py File Reference

This program takes in hpgl file and parses it into a list of commands and parses it into a

list of commands and positions. More...

Functions

def parse_hpgl.parse_file (file_name, res, state=0, CPR=0, L1=0, L2=0, x_0=0,

y_0=0)

Takes in a file name for a hpgl file and parses it into a list. More...

def parse_hpgl.pair_split (iterable)

A quick function to split a list and pair up elements in a list. More...

def parse_hpgl.output_text (hpgl, file_name)

A function to output to a text file. More...

def parse_hpgl.coord_to_ticks (coords, CPR, L1, L2, x_0, y_0, pre_tick, pre_angle)

Converts coordinates into ticks for an encoder, particularly for a coaxial 2DOF

pen plotter. More...

Variables

parse_hpgl.file = sys.argv[1]

parse_hpgl.output = sys.argv[2]

parse_hpgl.res = int(sys.argv[3])

parse_hpgl.x = parse_file(file,res)

parse_hpgl.CPR = int(sys.argv[4])

parse_hpgl.L1 = float(sys.argv[5])

parse_hpgl.L2 = float(sys.argv[6])

parse_hpgl.x_0 = float(sys.argv[7])

parse_hpgl.y_0 = float(sys.argv[8])

Detailed Description

This program takes in hpgl file and parses it into a list of commands and parses it into a

list of commands and positions.

ME405 Library: parse_hpgl.py File Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html...

1 of 6 6/8/18, 5:24 PM

It takes only hpgl files with paths in them. It returns a list with the commands and

coordinates for relevant commands. The more high resolution of the x,y coordinates the

better.

There is also a command for writing all the commands to a txt file as well as converting

the coordinates into units to inches.

This python file can be run with the system args of the input file, output file and the

resolution of the hpgl file.

The file can be run like this:

 1 python parse_hpgl.py drawing.hpgl print.txt 1016

where the first argument is the input file, second the output, and the last the resolution.

If the coordinates need to be parsed in encoder ticks. Use like this:

 1 python parse_hpgl.py a.hpgl a.txt 5 3200 8.11 10.08 0.5 14

The arugments for this are the hpgl file to be parsed, the output text file, the resolution,

the CPR of the motors, the length of arm 1, length of arm 2 the x_0 of the paper space,

and lastly the y_0 origin of the paper space.

There may be an error in the coord to ticks function

Author

Samuel Lee

Copyright

Samuel Lee

Function Documentation

ME405 Library: parse_hpgl.py File Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html...

2 of 6 6/8/18, 5:24 PM

def parse_hpgl.coord_to_ticks (coords,

CPR,

L1,

L2,

x_0,

y_0,

pre_tick,

pre_angle

)

Converts coordinates into ticks for an encoder, particularly for a coaxial 2DOF pen

plotter.

Parameters

CPR Counts of ticks per one revolution of the output shaft

L1 Length of arm 1 [in]

L2 Length of arm 2 [in]

x_0 x orign of the paper space in respect to global fram [in]

y_0 y orign of the paper space in respect to global fram [in]

pre_angle the inital angle the plotter begins [degrees]

Returns

tick_list List of tick pairs, nested list with ticks

def parse_hpgl.output_text (hpgl,

file_name

)

A function to output to a text file.

Parameters

hpgl A list of commands from parsed_list

file_name The output file name, extension '.txt' file must be included.

ME405 Library: parse_hpgl.py File Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html...

3 of 6 6/8/18, 5:24 PM

def parse_hpgl.pair_split (iterable)

A quick function to split a list and pair up elements in a list.

This is particular to a list of floats and returns the coordinates as tuples

Parameters

iterable A list of floats of paired x,y coordinates (x1,y1,x2,y2)

Returns

list_of_pairs Returns a list of list of the coordinates

ME405 Library: parse_hpgl.py File Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html...

4 of 6 6/8/18, 5:24 PM

def parse_hpgl.parse_file (file_name,

res,

state = 0,

CPR = 0,

L1 = 0,

L2 = 0,

x_0 = 0,

y_0 = 0

)

Takes in a file name for a hpgl file and parses it into a list.

A raw hpgl file has text that looks as follows:

IN;SP1;PU0,0;PD0,90;PU487,751;PD492,749

the first two letters determines the code command. Each command has a certain

amount of parameters thereafter that represent a particular setting or position.

Each command is separated by a ';'

For more information on hpgl code refer to http://www.isoplotec.co.jp

/HPGL/eHPGL.htm

It returns a list with elements that look like this:

Units are in inches.

MAKE SURE THE RESOLUTION IS THE CORRECT. Default resolution in most hpgl code

is 1016.

The first entry is tne command, second is the number of points for that command,

and the rest are the position coordinates.

['IN;1; 0x0'] ['SP;1; 0x0'] ['PU;1;', '1183x327'] ['PD;1;', '1183x710'] ['PU;1;',

'1175x701'] ['PD;14;', '1175x709',... ['PU;1;', '1183x238'] ['SP;1; 0x0'] ['IN;1; 0x0']

If state = 1 and all the correct arguments are supplied, it will convert the hpgl into

encoder ticks needed to draw the picture.

Parameters

ME405 Library: parse_hpgl.py File Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html...

5 of 6 6/8/18, 5:24 PM

file_name The hpgl file name 'names.hpgl'

resolution The resolution of the hpgl file in dpi.

state 0 is for convert to inches, 1 to change to encoder ticks

CPR Counts of ticks per one revolution of the output shaft

L1 Length of arm 1 [in]

L2 Length of arm 2 [in]

x_0 x orign of the paper space in respect to global fram [in]

Note

Origin is top left corner of paper

Parameters

y_0 y orign of the paper space in respect to global fram [in]

Returns

parsed_list List of command, nested list with command & parameters

ME405 Library: parse_hpgl.py File Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html...

6 of 6 6/8/18, 5:24 PM

plot.py File Reference

This file is Homework 0. More...

Variables

string plot.file_name = 'plot.csv'

plot.file = open(file_name,'r')

list plot.eliminate = ['', ' ','\t']

list plot.x = []

list plot.y = []

plot.lines = file.readlines()

list plot.final_points = []

string plot.line_string = ''

plot.points = line_string.split(',')

list plot.list_of_points = []

Detailed Description

This file is Homework 0.

It takes in a csv file called eric.csv. It will take only the two first columns of data and plot

it. Other things will be ignored or deleted.

The order it works is:

Open file1.

Read all the lines2.

Close the file3.

For every line If the line has no numbers, ignore For character in line If it is a digit,

comma, or period, it stays, else skip Split the left over string with the commas If

there are less than 2 points skip If each element is a number, add to data points

temp list Another check to make sure there are more than two data points If less

than two, skip Else, add the first two numbers to the x and y data list

4.

This opens to read a file called 'plot.csv' for plotting.

ME405 Library: plot.py File Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html...

1 of 1 6/8/18, 5:24 PM

servo.Servo Class Reference

A class for controlling the position of a servo. More...

Public Member Functions

def __init__ (self, pin, prescaler=4.5, freq=50, min_us=665, max_us=2360,

angle=190)

def write_us (self, us)

setting the duty cycle for the servo to control its position. More...

def write_angle (self, degrees=None, radians=None)

Move to the specified angle in degrees or radians. More...

def read_servo (self)

This function is not yet developed but is aiming to be able to read the timer.

Public Attributes

tim

The Timer desired for the servo at a specified frequency.

pin

Output pin used to control the servo.

ch2

Channel used to initialize the servo for PWM.

min_us

max_us

us

freq

angle

prescaler

t_freq

read

conversion

servo_pos

ME405 Library: servo.Servo Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

1 of 3 6/8/18, 5:21 PM

Detailed Description

A class for controlling the position of a servo.

This code was referenced from the following link below.

Reference: https://bitbucket.org/thesheep/micropython-servo/src

Class methods are: write_us(us) ==> sets the servo duty cycle write_angle(degrees)

==> solves for servo signal in microseconds from user input angle.

To Properly initialize an instance of Servo, refer to the example below Ex:

 1 servo_1 = Servo('PA5')

This makes an instance of Servo using Timer 2 on pin A5 of the white Nucleo L476RG

board that is pin connected on top of the Shoe of Brian purple MicroPython board.

 Parameters:
 @param pin (machine.Pin): The pin where servo is connected. Must support PWM.
 @param prescaler: allow the timer to be clocked at the rate a user desires.
 @param freq (int): The frequency of the signal, in hertz.
 @param min_us (int): The minimum signal length supported by the servo.
 @param max_us (int): The maximum signal length supported by the servo.
 @param angle (int): The angle between the minimum and maximum positions.

 All of these parameters can be found on the servo's datasheet linked below.
 HS-65MG Servo Datasheet: https://www.servocity.com/hs-65mg-servo

Member Function Documentation

def servo.Servo.write_angle (self,

degrees = None,

radians = None

)

Move to the specified angle in degrees or radians.

Solves for and returns the signal length of the servo

ME405 Library: servo.Servo Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

2 of 3 6/8/18, 5:21 PM

def servo.Servo.write_us (self,

us

)

setting the duty cycle for the servo to control its position.

Returns the signal length of the servo in microseconds, frequency (Hz). period (Sec),

and the percent duty cycle being sent

Parameters

us The current signal length of the servo.

The documentation for this class was generated from the following file:

servo.py

ME405 Library: servo.Servo Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

3 of 3 6/8/18, 5:21 PM

task_share.Queue Class Reference

This class implements a queue which is used to transfer data from one task to another.

More...

Public Member Functions

def __init__ (self, type_code, size, thread_protect=True, overwrite=False,

name=None)

Initialize a queue by allocating memory for the contents and setting up the

components in an empty configuration. More...

def put (self, item, in_ISR=False)

Put an item into the queue. More...

def get (self, in_ISR=False)

Read an item from the queue. More...

def any (self)

Returns True if there are any items in the queue and False if the queue is

empty. More...

def empty (self)

Returns True if there are no items in the queue and False if there are any items

therein. More...

def full (self)

This method returns True if the queue is already full and there is no room for

more data without overwriting existing data. More...

def num_in (self)

This method returns the number of items which are currently in the queue.

More...

def __repr__ (self)

This method puts diagnostic information about the queue into a string. More...

Static Public Attributes

int ser_num = 0

A counter used to give serial numbers to queues for diagnostic use. More...

ME405 Library: task_share.Queue Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

1 of 5 6/8/18, 5:21 PM

Detailed Description

This class implements a queue which is used to transfer data from one task to another.

If parameter 'thread_protect' is True, the transfer will be protected from corruption in

the case that one thread might interrupt another due to threading or due to one thread

being run as an interrupt service routine.

Constructor & Destructor Documentation

ME405 Library: task_share.Queue Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

2 of 5 6/8/18, 5:21 PM

def task_share.Queue.__init__ (self,

type_code,

size,

thread_protect = True,

overwrite = False,

name = None

)

Initialize a queue by allocating memory for the contents and setting up the

components in an empty configuration.

The data type code is given as for the Python 'array' type, which can be any of

b (signed char), B (unsigned char)

h (signed short), H (unsigned short)

i (signed int), I (unsigned int)

l (signed long), L (unsigned long)

q (signed long long), Q (unsigned long long)

f (float), or d (double-precision float)

Parameters

type_code The type of data items which the queue can hold

size The maximum number of items which the queue can

hold

thread_protect True if mutual exclusion protection is used

overwrite If True, oldest data will be overwritten with new data if

the queue becomes full

name A short name for the queue, default QueueN where N is a

serial number for the queue

Member Function Documentation

def task_share.Queue.__repr__ (self)

This method puts diagnostic information about the queue into a string.

ME405 Library: task_share.Queue Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

3 of 5 6/8/18, 5:21 PM

def task_share.Queue.any (self)

Returns True if there are any items in the queue and False if the queue is empty.

Returns

True if items are in the queue, False if not

def task_share.Queue.empty (self)

Returns True if there are no items in the queue and False if there are any items

therein.

Returns

True if queue is empty, False if it's not empty

def task_share.Queue.full (self)

This method returns True if the queue is already full and there is no room for more

data without overwriting existing data.

Returns

True if the queue is full

def task_share.Queue.get (self,

in_ISR = False

)

Read an item from the queue.

If there isn't anything in there, wait (blocking the calling process) until something

becomes available. If non-blocking reads are needed, one should call any() to check

for items before attempting to read any items.

Parameters

in_ISR Set this to True if calling from within an ISR

ME405 Library: task_share.Queue Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

4 of 5 6/8/18, 5:21 PM

def task_share.Queue.num_in (self)

This method returns the number of items which are currently in the queue.

Returns

The number of items in the queue

def task_share.Queue.put (self,

item,

in_ISR = False

)

Put an item into the queue.

If there isn't room for the item, wait (blocking the calling process) until room

becomes available, unless the overwrite constructor parameter was set to True to

allow old data to be clobbered. If non-blocking behavior without overwriting is

needed, one should call full() to ensure that the queue is not full before putting

data into it.

Parameters

item The item to be placed into the queue

in_ISR Set this to True if calling from within an ISR

Member Data Documentation

int task_share.Queue.ser_num = 0 static

A counter used to give serial numbers to queues for diagnostic use.

The documentation for this class was generated from the following file:

task_share.py

ME405 Library: task_share.Queue Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

5 of 5 6/8/18, 5:21 PM

task_share.Share Class Reference

This class implements a shared data item which can be protected against data

corruption by pre-emptive multithreading. More...

Public Member Functions

def __init__ (self, type_code, thread_protect=True, name=None)

Allocate memory in which the shared data will be buffered. More...

def put (self, data, in_ISR=False)

Write an item of data into the share. More...

def get (self, in_ISR=False)

Read an item of data from the share. More...

def __repr__ (self)

This method puts diagnostic information about the share into a string. More...

Static Public Attributes

int ser_num = 0

A counter used to give serial numbers to shares for diagnostic use. More...

Detailed Description

This class implements a shared data item which can be protected against data

corruption by pre-emptive multithreading.

Multithreading which can corrupt shared data includes the use of ordinary interrupts as

well as the use of a Real-Time Operating System (RTOS).

Constructor & Destructor Documentation

ME405 Library: task_share.Share Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

1 of 4 6/8/18, 5:21 PM

def task_share.Share.__init__ (self,

type_code,

thread_protect = True,

name = None

)

Allocate memory in which the shared data will be buffered.

The data type code is given as for the Python 'array' type, which can be any of

b (signed char), B (unsigned char)

h (signed short), H (unsigned short)

i (signed int), I (unsigned int)

l (signed long), L (unsigned long)

q (signed long long), Q (unsigned long long)

f (float), or d (double-precision float)

Parameters

type_code The type of data items which the share can hold

thread_protect True if mutual exclusion protection is used

name A short name for the share, default ShareN where N is a

serial number for the share

Member Function Documentation

def task_share.Share.__repr__ (self)

This method puts diagnostic information about the share into a string.

ME405 Library: task_share.Share Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

2 of 4 6/8/18, 5:21 PM

def task_share.Share.get (self,

in_ISR = False

)

Read an item of data from the share.

Interrupts are disabled as the data is read so as to prevent data corruption by

changes in the data as it is being read.

Parameters

in_ISR Set this to True if calling from within an ISR

def task_share.Share.put (self,

data,

in_ISR = False

)

Write an item of data into the share.

Any old data is overwritten. This code disables interrupts during the writing so as to

prevent data corrupting by an interrupt service routine which might access the same

data.

Parameters

data The data to be put into this share

in_ISR Set this to True if calling from within an ISR

Member Data Documentation

int task_share.Share.ser_num = 0 static

A counter used to give serial numbers to shares for diagnostic use.

The documentation for this class was generated from the following file:

ME405 Library: task_share.Share Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

3 of 4 6/8/18, 5:21 PM

task_share.py

ME405 Library: task_share.Share Class Reference file:///home/mecha08/Lab-1/PenPlotter/Final/html/...

4 of 4 6/8/18, 5:21 PM

